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Abstract
• Key message  We successfully transformed Pinus sylvestris yield tables into diameter distribution models. The best 
results were obtained with the parameter recovery method based on both mean and quadratic mean diameter, which 
explained 70% of the variability of frequencies by diameter classes and provided better results in the analysis of errors. 
On the other hand, the method based on stand density, dominant diameter and quadratic mean diameter explained 
less variability of frequencies by diameter classes (64.4%).
• Context  Old datasets used to develop yield table models can be recovered to transform those yield tables into diameter 
distribution models that provide a more detailed description of size variability and forest structure.
• Aims  We used archived measurements collected to develop yield table models for Pinus sylvestris L in central Spain, to 
transform those yield tables into a diameter distribution model by using parameter recovery methods.
• Methods  We compared two different parameter recovery methods, one based on both mean and quadratic mean diameter 
and another one based on dominant diameter, stand density and quadratic mean diameter and used a set of 104 even aged 
plots to analyze the performance of the said methods for the transformation of Pinus sylvestris L yield tables in central Spain 
into a diameter distribution model.
• Results  The parameter recovery method based on both mean and quadratic mean diameter explained 70% of the variability 
of frequencies by diameter classes and provided better results than the method based on stand density, dominant diameter 
and quadratic mean diameter that explained 64.4% of the variability of frequencies by diameter classes. However, more 
important than the method itself were the errors that propagated from the models predicting the different variables used in 
the parameter recovery.
• Conclusion  Based on the results from the analysis of errors by diameter classes, the method using both mean and quadratic 
mean diameter outperformed the method using dominant diameter, stand density and quadratic mean diameter and is the 
best option to transform P. sylvestris yield tables into diameter distribution models.
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1  Introduction

Pinus sylvestris L is the pine species with the widest 
distribution range, occupying forested areas in Eurasia 
ranging from eastern Siberia, Mongolia and China to south-
western Europe. As in other countries, in Spain, P. sylvestris 
is the most abundant species in terms of stocked volume, 
accounting for a 15% of the total volume in the National 
Forest Inventory (IFN 2015); and this proportion is larger 
in the mountains where P. sylvestris is native, typically 
forming forested areas just below the timberline. However, 
the natural range of P. sylvestris has been extended as this 
species has been traditionally used in the area for lumber 
production and now occupies areas at lower elevations.

Different forest management systems and silvicultural 
treatments are used with P. sylvestris, with management 
objectives ranging from pure conservation of biodiversity 
and natural assets to purely productive forest managed 
as even-aged forest with shorter rotations. The scope and 
detail of forest growth models can vary substantially. 
Following the nomenclature in Burkhart and Tomé (2012, 
p. 234), yield tables are whole-stand growth models 
that only provide the temporal evolution of aggregated 
stand attributes and represent the coarser level of detail 
for growth models. Individual-tree models are on the 
opposite side of the spectrum where the growth and 
mortality of individual trees are subject to modelling. 
An intermediate level of detail in the modelling scale is 
size distribution models. These models do not provide 
information at the tree level but augment the information 
recorded in whole-stand models with information 
disaggregated by size, with diameter at breast height 
( dbh ) being the size variable typically considered. 
Smalley and Bailey (1974) growth model for Pinus taeda 
L. is an early example of this type of moderate level of 
modelling detail where a Weibull probability distribution 
describing dbh frequencies is provided for stands with a 
given age and site index. By providing dbh distributions, 
models of this type allow for a better characterization 
of forest structure and also for more accurate appraisals 
of the forest resources, especially of timber assets 
whose price is highly dependent on the actual log size 
(Breidenbach et al. 2008).

For many species and sites, whole-stand models are the 
only growth model available, and transforming these yield 
tables into a diameter distribution model may significantly 
improve the information available for some management 
purposes. Whole-stand models typically provide the 
temporal evolution of attributes that can be related to a size 
distribution. If a model considers the temporal evolution 
of a sufficient number of attributes related to the size 

distribution, they can be used to transform a whole-stand 
model into a size distribution model (Qin and Cao 2006). 
This transformation is oftentimes performed applying 
parameter recovery methods (PRM) (Strub and Burkhart 
1975; Hyink and Moser 1983) with the estimated stand 
attributes for each considered age.

PRM methods bear a strong resemblance with the 
statistical method of moments, and for some PRM 
variants, they coincide. These methods are general and 
not limited to stand growth modelling. For example, they  
can be employed to characterize the current state of the 
forest using field and remotely sensed data (Gobakken 
and Næsset 2005; Maltamo et al. 2006; Bollandsås and 
Næsset 2007). PRM methods are based on establishing a 
system of equations between aggregated stand attributes 
and their expression based on a probability distribution 
model describing the tree-size frequencies (Knoebel et al. 
1986; Weiskittel et al. 2011; Mehtätalo and Lappi 2019). 
PRM systems of equations require as many equations as 
parameters define the size distribution model (e.g.,  Del 
Río 1998). Therefore, prior to applying PRM methods 
for the transformation of a whole-stand model into a 
size distribution model, it might be necessary to model 
additional stand attributes related to the size distribution.

Rojo and Montero (1996) P. sylvestris yield tables have 
been in use for more than 20 years and are still one of the 
main references for the silviculture of P. sylvestris in central 
Spain. The dataset used to construct these yield tables has been 
digitized and archived and it contains measurements that allow 
transforming the yield tables into a dbh distribution model. 
Such transformation is of clear interest for forest managers 
as it would significantly enhance the set of management tools 
available in the area. The objective of this manuscript is to 
compare two alternative methods to transform P. sylvestris 
yield tables into a dbh distribution model. To achieve this 
objective, we first recovered the field measurements used to 
develop these yield tables. Then, we used the recovered dataset 
to develop models for additional forest attributes in order to 
make possible the application of two alternative PRM methods 
for the transformation of the yield tables into a dbh distribution 
model. Finally, we assessed the errors of the dbh distributions 
obtained by each PRM method when (1) directly applied to field 
measured attributes and (2) applied to predictions derived from 
the yield tables.

2 � Material and methods

2.1 � Yield tables for Pinus sylvestris

Yield tables for P. sylvestris in central Spain were constructed 
by Rojo and Montero (1996) using a set of 104 plots containing 
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field measurements of dbh , tree heights, stand density and age. 
These measurements were used to construct a system of four 
models or fundamental relationships describing the evolution 
over time of four aggregated stand attributes for ages above 
20 years. These models can be grouped into silviculture-
independent models and silviculture-dependent models 
(Fig. 1).

The first model describes the evolution over time of 
Assman’s dominant height, Hod . This model considers two 
extreme site indexes corresponding to dominant heights of 
17 m and 29 m, respectively, at age 100 years. Two Chapman-
Richards models Hod(t, I = 17) and Hod(t, I = 29) provide, 
respectively, the temporal evolution of Hod for even-aged 
stands with site indexes 17, Eq. (1), and 29, Eq. (2).

The temporal evolution of Hod for stands with a generic 
site index I was obtained by linear interpolation between 
the 17 and 29 m curves, Eq. (3). This technique, referred 
by Gadow and Hui (1999) as “sectioning”, resulted in 
polymorphic dominant height models.

(1)Hod(t, I = 17) = 19.962(1 − e−0.02642t)
2.1739

(2)Hod(t, I = 29) = 31.827(1 − e−0.03431t)
2.8280

(3)
Hod(t, I) = Hod(t, I = 17) + [Hod(t, I = 29) − Hod(t, I = 17)](

I − 17

12
)

The second silviculture-independent model, Eq.  (4), 
provided the mean tree height for a stand with site index I 
and age t, H(t, I) , as a function of Hod(t, I) . Thus, H is only 
a function of the stand age and site index.

The third and fourth models in Rojo and Montero 
(1996) yield tables depend on the silvicultural treatments 
applied to a given stand. These yield tables consider three 
silvicultural or thinning regimes, S . The first one, S = 1 , is 
the thinning regime used in the plots that were measured 
to develop the yield tables and it is referred as observed 
silviculture. Two more thinning regimes (i.e. S = 2 , or 
moderate thinning, and S = 3 , or intense thinning) are 
considered in the yield tables. Models for the intense and 
moderate thinning regimes were fit using information 
from thinning experiments conducted in the region by the 
Spanish National Institute of Agricultural Research (INIA). 
For stands with ages larger than 40 years, the third model, 
Eq. (5), provided stand density, N , as a function of age, site 
index and the thinning regime as:

(4)H(t, I) = −0.8920 + 0.9603Hod(t, I)

(5)N(t, I, S) =

⎧
⎪⎪⎨⎪⎪⎩

�
100

0.5815+0.0106×Hod(t,I)t
0.5424

�2
if S = 1�

100

0.2949+0.0653×Hod(t,I)t
0.2301

�2
if S = 2�

100

−1.1035+0.3476×Hod(t,I)t
−0.0235

�2
if S = 3

Fig. 1   Parameter recovery 
method (PRM) of tree size 
variables from yield tables of 
P. sylvestris in Guadarrama 
sites (Spain). I : site index. t  : 
stand age. N: stand density.D

g
 : 

quadratic mean diameter. D
o
 : 

dominant diameter (mean diam-
eter of the 100 thickest trees 
ha−1). S : thinning regime. PRM : 
parameter recovery method
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For ages below 40 years, N(t, I, S = 2) and N(t, I, S = 3) 
were computed using the curve for the observed silviculture, 
N(t, I, S = 1), multiplied by a scaling ratio computed as the 
density for the considered thinning regime divided by the 
stand density for S = 1 both at age 40 years.

Finally, the fourth model provided the quadratic 
mean diameter Dg as a function of H0d and N  . Due to its 
dependence on N , Dg , Eq. (6), is ultimately a function of 
the thinning regime:

2.2 � PRM systems for transformation into dbh 
distribution models

We applied PRM methods assuming that the dbh distribution 
for an even-aged stand can be described using a Weibull 
probability distribution, Eq. (7). This distribution has been 
traditionally used to describe dbh (Bailey and Dell 1973; 
Cao 2004; Maltamo et al. 2004).

We used the three-parameter Weibull distribution 
functions where � and � are the shape and scale parameters, 
respectively, and the parameter � is a location parameter 
that defines the minimum size. In this study, � was fixed at 
5 cm because that is the minimum dbh measured in the field 
plots and also a common threshold for tree measurements 
in the area. Models where � was allowed to vary were 
initially considered but discarded as maximum likelihood 
(ML) estimates of Weibull dbh models with variable � were 
significantly different, based on a likelihood ratio test, from 
the ML models with fixed � in only 16.34% of the plots 
used to analyze dbh distributions (see Field data section). In 
addition, inspection of fitted models with fixed and variable 
� only showed minor differences between frequencies in 
10-cm dbh classes. Based on this preliminary result, we 
considered � as fixed; thus, the number of stand attributes 
required by the PRM methods is at least two.

2.3 � Recovery of dbh distributions using mean 
diameter

The studied P. sylvestris yield tables only provide the 
temporal evolution of one variable, Dg , directly related to 
the dbh distribution. Thus, to transform these yield tables 
into a dbh distribution model, we modeled the temporal 

(6)

Dg(t, I, S) = −3.7795 + 6.9369
100√
N(t, I, S)

+ 0.5549Ho(t, I, S).

(7)W(x|�, �, �) =
(
�

�

)(
x − �

�

)�−1

e
−(

x−�

�
)
�

evolution of extra variables that could be computed from 
the dbh distribution.

The first PRM system of equations, Eqs. (8) and (9), to 
transform the yield tables into a dbh distribution model was 
based on Dg and the mean diameter D as additional variable 
to obtain the parameters � and � of the dbh distribution.

This PRM system of equations, when applied to sampled 
values of Dg and D , is equivalent to the commonly used 
method of moments as Dg and D are, respectively, second- 
and first-order moments with respect to zero of the dbh 
distribution. Then, we fitted a linear regression model 
where D was expressed as a function of Dg (Fig. 1) with 
the 104 plots used to construct the yield tables. Due to its 
dependence on Dg , D is a function of stand age, site index 
and applied silviculture, i.e. 

−

D (t, I, S) . Finally, to solve for 
� and � , we applied the numerical methods to solve PRM 
systems of equations, described later.

2.4 � Recovery of dbh distributions using dominant 
diameter

We tested a second PRM system for the transformation of 
the yield tables into a dbh distribution model. The additional 
dbh parameter used for the second PRM system was the 
dominant diameter Do . Following Assmann’s dominant 
height definition, Do is the mean diameter of the largest 100 
trees in a hectare. Using Dg and Do , we established a system 
of PRM Eqs. (8) and (10) to obtain the parameters � and �.

where Dlim is the 
[
100(1 −

100

N
)
]th

 percentile of the diameter 
distribution (Ayuga-Téllez et al. 2014).

As with D , in order to incorporate Do to the set of 
variables provided by the yield tables (Fig. 1), we fitted a 
linear model where Do was expressed as a linear function of 
the stand variables Dg and N−1 included in the yield table 
models (Fig. 1). Due to its dependence on Dg and N , Do is 
a function of stand age, site index and applied silviculture, 
i.e. Do(t, I, S) . This model was fit using the dbh data from 
the 104 plots used to construct the yield tables. This system 
of PRM equations was solved using numerical methods 
described in next section.

(8)Dg = ∫
∞

5

x2
(
�

�

)(
x − 5

�

)�d−1

e
−(

x−5

�
)
�d

dx

(9)D = ∫
∞

5

x

(
�

�

)(
x − 5

�

)�−1

e
−(

x−5

�
)
�

dx

(10)Do =
(

N

100

)
∫

∞

Dlim

x

(
�

�

)(
x − 5

�

)�−1

e
−(

x−5

�
)
�

dx
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2.5 � Numerical methods to solve PRM systems 
of equations

Solutions for both PRM systems of equations were obtained 
using numerical methods. For each method, we defined a 
cost function of the form

where L1 and L2 were the left hand side values for the 
first and second equation of the corresponding PRM system 
of equations, and R1(�, �) and R2(�, �) their associated 
right hand sides. This solution has a minimum value of 0 
when both PRM equations are verified (i.e. L1 = R1(�, �) 
and L2 = R2(�, �) ). For the PRM systems that use D , � was 
directly deducted as a function of � . Then, substituting in the 
second equation reduced the problem to solving an equation 
of the form L2 − R2(�) = 0.

As yield tables model the temporal evolution of even-aged 
stands, we restricted the search with � > 1, to obtain unimodal 
distributions. We used the internal optimizer available in 
R (R Core Team 2018) through the optim and optimize 
functions and implemented a grid search method for the 
PRM method in section Recovery of dbh distributions using 
dominant diameter. R code implementing these methods 
can be obtained from https​://doi.org/10.5281/zenod​o. 
39348​85.

2.6 � Field data

We validated the PRM methods for dbh with a set of 104 
field plots used in the construction of Rojo and Montero 
(1996) yield tables. These plots were measured in the 
valleys of Fuenfria and Valsain in Guadarrama Mountains. 
All trees with dbh 5 cm or larger were callipered and those 
trees identified as dominant were also measured for height 
to determine the dominant height of each plot (Table 1). In 
addition, the age of each plot was determined using tree 
cores and combined with Ho to determine age and site index 
of the plots. Tree measurements and field plot attributes 
(Rojo and Montero 2020) can be obtained from https​://doi.
org/10.5281/zenod​o.39348​85.

2.7 � Validation of PRM methods

Two different assessments of the PRM methods previously 
described were considered. In the first assessment, we 
only evaluated the PRM systems and we did not consider 
additional errors derived from the chain of yield table models. 
Plot values of Dg,i and Ni , where i indicates the ith plot, were 
directly computed from the field measurements and used to 
solve the PRM systems of equations (Eqs. 8, 9 and 8, 10). 
These PRM systems of equations will be, respectively, 

(11)cost(�, �) = (L1 − R1(�, �))
2 + (L2 − R2(�, �))

2

indicated as PRM(DDg) and PRM(DoDg) . Solutions of the 
PRM systems of equations provided two initial sets of dbh 
distribution parameters �̂

i,D
 and �̂

i,D
 and �̂i,Do

 and �̂i,Do
 based 

on field measurements of Dg,i , Di and Do,i , Dg,i and Ni.
For the second assessment, the stand variables used by 

the PRM methods were deducted from different models 
using t, I and S as predictors, for a more realistic scenario. 
First, to account for the errors introduced by the models of 
the yield table, predictions of Dg,i and Ni were computed 
for each field plot by entering in the yield table models in 
Eqs. (5) and (6) with the corresponding plot values ti, Ii, Si . 
To avoid over-optimistic predictions of Di and Do,i , these 
attributes were obtained using leave-one-out cross-
validation with their corresponding models. For each plot, 
the models relating D with Dg and Do with Dg and N−1 were 
refitted without plot i , then D̂g,i and N̂i were used as input 
to obtain predicted values ̂Di and D̂o,i . The cross-validation 
was not applied to the yield table models for Dg and N 
because these models were validated when the yield tables 
were developed and because no significant lack of fit has 
been observed during more than 20 years of use of these 
models. Once predicted values of ̂Di , D̂o,i , D̂g,i and N̂i were 
obtained, they were used to solve the corresponding PRM 
systems of equations. These new solutions provided two 
additional sets of parameters denoted as ̂̂�

i,
−

D
 and ̂̂�

i,D
 and 

̂̂�i,Do
 and ̂̂� i,D0

 , where the double hat is used to indicate that 
these parameters were obtained using predicted values ̂Di

,D̂o,i, D̂g,i and N̂i . These PRM systems of equations are, 
respectively, indicated as PRM(

̂
DD̂g) and PRM(D̂oD̂g).

Also, in order to have a baseline for comparisons 
with the PRM methods, we obtained, for each plot i , ML 
estimates, �̂i,ML and �̂i,ML , of the parameters of the Weibull 
distribution model describing the dbh distribution of each 
plot. For one plot, �̂i,ML was smaller than one and the 
estimated distributions had a reverse J shape. As all plots 
were measured in even-aged stands, to obtain unimodal 
Weibull distributions, we re-fitted the model for this plot 
but only search for solution with �𝛼i,ML > 1 when maximizing 
the likelihood function.

Table 1   Summary of plot level values in the dataset used to analyze 
the PRM systems for dbh . Mean, minimum (Min), maximum (Max) 
and standard deviation (Sd) values of the plot level mean diameter 

−

D , 
quadratic mean diameter D

g
 , dominant diameter D

o
 and stand density 

N

Variable Min Mean Max Sd

D(cm) 7.02 27.50 50.24 10.85

D
g
(cm) 7.17 28.24 50.96 10.90

D
o
(cm) 8.80 36.61 58.90 12.22

N (trees ha−1) 250.00 2058.98 11,154.00 2350.32
Trees per plot 24 71.61 193 33.15
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Finally, for all plots and methods for estimating the 
parameters of the Weibull distribution, we computed the 
standard deviation of the corresponding dbh distribution as

using the values of � and � obtained with each method. 
To differentiate between standard deviations obtained with 
different methods, we employ the notation that we used for 
� and �.

2.8 � Similarity between PRM and ML dbh probability 
distributions

We evaluated the similarity between the parameters derived 
by each PRM method m and those obtained through ML 
by using the correlation coefficient between ML and PRM 
parameters as a measure of agreement:

In Eq. (13), yML,i represents either �̂i,ML, �̂i,ML or �̂i,ML and 
ym,i represents either, �̂

i,D
, �̂i,D0

, ̂̂�
i,D

 or ̂̂�i,Do
; �̂

i,D
, �̂i,Do, 

̂̂
�
i,
−

D
 or 

̂̂
� i,Do

 or �̂
i,D

 , �̂i,Do
, ̂̂�

i,D
 or ̂̂�i,Do . Finally, yML represents the 

average value of either ̂�i,ML, �̂i,ML or ̂�i,ML and ym is the average 
of the estimated values of �, � , or � obtained by each PRM 
method. We tested whether correlation coefficients were 
significantly different from zero and whether the ML estimates 
of �, � and � were on average different from those obtained 
applying the four PRM methods under analysis.

2.9 � Class‑wise and global errors

To evaluate the performance of the PRM methods, rather 
than their similarity with ML, we computed two different 
groups of error metrics. These error metrics were also 
computed for ML as baseline values of reference. For each 
method, including ML, we computed class-wise error 
metrics for the proportion of trees by dbh classes. The 
number of dbh classes, nc , was 8. The first class was defined 
by the interval (5–20 cm] and the last class contained trees 
with dbh larger than 80 cm. The remaining classes were 
10 cm wide intervals open to the left and closed to the right. 
For each dbh class, j , and method, m , we computed

(12)� =

√
�2(Γ

(
1 +

2

�

)
− Γ

(
1 +

1

�

)2

),

(13)� =

∑n

i=1
(yML,i − yML)(ym,i−ym)�∑n

i=1
(yML,i − yML)

2
�∑n

i=1
(ym,i − ym)

2

(14)Biasj,m =

∑n

i=1

�
p̂i,j,m − pi,j

�
n

In Eqs.  (14), (15), (16) and (17), pi,j represents the 
proportion of trees in the jthdbh class in the ith plot, p̂i,j,m 
represents the prediction of pi,j by method m , pj is the average 
across plots of pi,j , and n equals 104. In addition to Biasj,m , 
RMSEj,m and MAEj,m , we computed their relative counterparts 
denoted as rBiasj,m = Biasj,m∕pj , rRMSEj,m = RMSEj,m∕pj 
and rMAEj,m = MAEj,m∕pj . Finally, we focused on the errors 
of PRM(

̂
DD̂g) and PRM(D̂oD̂g) . For each dbh class, we 

performed a paired sampled t test on the absolute values of the 
errors |||p̂i,j,m − pi,j

||| obtained by each of these two methods.
The last set of error metrics consisted of the global versions 

of Eqs. (14), (15), (16) and (17) where all dbh classes were 
considered together. These error metrics are

where the prefix g stands for global to indicate that all 
classes were pooled together. Note that gMAEm and gRMSEm 
are proportional to the average of the Reynolds error index 
used in Gobakken and Næsset (2005) and Bollandsås and 
Næsset (2007) and to the I index proposed by Strunk et al. 
(2017), respectively. Finally, gR2

m
 equals Strunk et al. (2017) 

H index. We did not calculate relative versions of gBiasm , 
gRMSEm and gMAEm as they will be proportional to their 
absolute counterparts by a constant that is the same for all 
methods.

(15)RMSEj,m =

�∑n

i=1

�
p̂i,j,m − pi,j

�2
n

(16)MAEj,m =

∑n

i=1

���p̂i,j,m − pi,j
���

n

(17)R2
j,m

= 1 −

∑n

i=1

�
p̂i,j,m − pi,j

�2
∑n

i=1

�−
p
j − pi,j

�2

(18)gBiasm =

∑n

i=1

∑nc
j=1

�
p̂i,j,m − pi,j

�

ncn

(19)gRMSEm =

����
∑n

i=1

∑nc
j=1

�
p̂i,j,m − pi,j

�2
ncn

(20)gMAEm =

∑n

i=1

∑nc
j=1

���p̂i,j,m − pi,j
���

ncn

(21)gR2
m
= 1 −

∑n

i=1

∑nc
j=1

�
p̂i,j,m − pi,j

�2
∑n

i=1

∑nc
j=1

�−
p
j − pi,j

�2
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Finally, we considered all dbh classes together and 
performed a paired sampled t test on the absolute values of the 
errors |||p̂i,j,m − pi,j

||| obtained for PRM(
−̂

DD̂g) and PRM(D̂oD̂g).

3 � Results

3.1 � Auxiliary regression models to complete 
the yield tables

The analyzed systems to transform the yield tables into 
dbh distribution models required auxiliary regression 
models to obtain D and Do . The developed model with 
D as response and Dg as predictor explained 99.95% of 
the variability of D . This model provides values of D 
that are smaller than Dg for all possible values of Dg . 
The linear model for Do with Dg and N−1 as predictors 
explained 97.99% of the variability of Do . Coefficients of 
determination obtained by cross validation were 99.95% 
for D and 97.87% for Do (Table 2). Once these models 
were chained with the yield table model to predict Dg and 
N from t, I and S , the percentage of explained variance for 
D and Do dropped to 83.52% and 85.13%, respectively.

3.2 � PRM and ML methods

Correlations between �̂ML and �̂
D

 , �̂ML and �̂
D

 , �̂ML and �̂
D

 
were 0.99 or larger, while correlations of �̂ML , �̂ML and �̂ML 
with �̂D0

 , �̂Do
 and �̂Do

 were 0.81, 0.99 and 0.89, respectively 
(Fig. 2). All these correlations were significantly different 
from zero at a 0.05 significance level. Correlations between 
�̂ML , �̂ML and �̂ML and ̂̂�

D
 , ̂̂�

D
 and ̂̂�

D
 were 0.82, 0.92 

and 0.80, respectively, and correlations between �̂ML , 
�̂ML and �̂ML and ̂̂�Do , 

̂̂
�Do

 and ̂̂�Do
 were 0.81, 0.92 and 

0.80, respectively (Fig. 2). All correlations between ML 
parameters and those derived using PRM methods based 

on predictions of D and Dg and Do , Dg and N  were still 
significantly different from zero at a 0.05 significance level 
but their magnitude was considerably smaller. These results 
showed that the chain of models to predict the attributes 
used in the PRM systems introduced significant errors 
in the estimation of the dbh distribution. No significant 
differences were observed between ML and any of the  PRM 
solutions for the parameter �. However, differences between 
ML and PRM(DoDg) and PRM(D̂oD̂g) were significantly 
different from zero at a 0.05 significance level for � and the 
parameter � (Table 3). While ML values are also estimates, 
ML method is a robust reference which indicates that the 
PRM method based on Do , Dg and N is less efficient than 
the PRM method based on 

−

D and Dg and introduces some 
bias in the estimation of � that results in an underestimation 
of the variability of dbh measured by �.

Maximum likelihood estimates �̂ML , �̂ML and �̂ML 
for dbh distribution showed a strong correlation with 
age and similar patterns were observed for �̂

D
 , �̂

D
 and 

�̂
D

 , for �̂D0
 , �̂Do

 and �̂Do
 , for ̂̂�

D
 , ̂̂�

D
 and ̂̂�Do

 and for ̂̂�Do
 , 

̂̂
�Do

 and ̂̂�Do
 (Fig. 3). Applying the PRM methods to the 

predicted values of D and Dg and Do , Dg and N  resulted 
on estimated values of the shape and scale parameter 
with a significantly lower variability (Fig. 3). A similar 
effect was observed for the standard deviation of the 
estimated Weibull distributions. The ranges of the 
standard deviations computed with ̂̂�

D
 and ̂̂�

D
 and ̂̂�D0

 and 
̂̂
�D0

 were 33.06% and 22.74% smaller than the range of 
standard deviations computed with �̂ML and �̂ML (Fig. 3). 
This may be explained by the fact that the models for D , 
Dg , Do and N  provided the average response for these 
variables for a given site index, age and thinning regime, 
and these variables did not fully explain the variability 
in the dbh distributions. An interesting topic for future 
research is to investigate how to further enhance the 
diameter distribution models derived from this study, so 
they might incorporate the unexplained variability when 

Table 2   Regression models to obtain the mean diameter, D (cm), 
and the dominant diameter D

0
 (cm). The term � represents a generic 

error term in each regression model. Coef std err: coefficient stand-
ard error. Res std err: residual standard error. Res std err CV and R2 

CV are the residual standard error and coefficient of determination 
obtained using leave-one-out cross-validation, respectively. D

g
 (cm) is 

the quadratic mean diameter and N the stand density (trees ha−1)

Model D = a + bD
g
+ �  

Coefficient Estimate Coef std err t value p value R2 R2 CV Res std err Res std err CV
a − 6.23E-1 6.35E-2 − 9.95  < 1E-5 99.95% 99.95% 0.23 cm 0.24 cm
b 9.96E-1 2.10E-3 474.8  < 1E-5
Model D

o
= a + bD

g
+ c

1

N
+ �

Coefficient Estimate Coef std err t value p value R2 R2 CV Res std err Res std err CV
a 3.18 6.21E-1 5.12  < 1.E-5 97.99% 97.87% 1.75 cm 1.80 cm
b 1.30 3.81E-2 34.11  < 1E-5
c − 3017 544 5.54  < 1E-5

Page 7 of 15    12Annals of Forest Science (2021) 78: 12



1 3

generating predictions from site index, age and thinning 
regime.

3.3 � Class‑wise and global errors for dbh 
distributions

Fig. 2   Correlations between shape ( � ), scale ( � ) parameters and stand-
ard deviation ( � ) of the dbh distributions obtained using maximum like-
lihood (ML) and PRM methods. PRM(DD

g
) : PRM system of Eqs. (8, 

9) applied to the field values of D and D
g
 . PRM(

̂
DD̂

g
) : PRM system 

of Eqs. (8, 9) used with values of ̂D and D̂
g
 obtained from age and site 

index. PRM(D
o
D

g
) and PRM(D̂

o
D̂

g
) : PRM system of Eqs. (8, 10) using 

the field values of N , D
o
 and D

g
 and their predicted values N̂ , D̂

o
 and 

D̂
g
 , resp. N: stand density. D

g
 : quadratic mean diameter. D

o
 : dominant 

diameter (mean diameter of the 100 thickest trees ha−1)

Table 3   Average difference between maximum likelihood (ML) 
estimates of � , � and � and the estimates of these parameters using 
PRM methods and t test p values for those differences. PRM(DD

g
) : 

PRM system of Eqs. (8, 9) applied to the field values of D and D
g
 . 

PRM(
̂
DD̂

g
) : PRM system of Eqs.  (8, 9) applied to values of ̂D and 

D̂
g
 obtained from age and site index using the corresponding models. 

PRM(D
o
D

g
) and PRM(D̂

o
D̂

g
) : PRM system of Eqs. (8, 10) using the 

field values of D
o
 , D

g
 and N and their predicted values D̂

o
, D̂

g
 and N , 

resp. D,D
o
 , D

g
 and N , are the mean diameter, dominant diameter, 

quadratic mean diameter and stand density. ̂D , D̂
o
 and D̂

g
 represent 

predictions of D,D
o
 and D

g
 obtained from the yield table models

Comparison � � �

Mean difference p value Mean difference p value Mean difference p value

ML vs PRM(DD
g
)   − 0.38 0.70 0.01 0.99 0.39 0.70

ML vs PRM(D
o
D

g
) − 4.18 0.00 − 0.04 0.97 3.52 0.00

ML vs PRM(
̂
DD̂

g
)   − 0.03 0.97 − 0.15 0.88 − 0.08 0.94

ML vs PRM(D̂
o
D̂

g
) − 4.27 0.00 − 0.19 0.85 3.51 0.00
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The analysis of class-wise Bias , RMSE and MAE showed that 
the effect of chaining models to predict the input variables of 
the PMR methods had an important impact on the accuracy 
and precision of the recovered  dbh distributions, which is 
more important than the PMR method itself (Fig. 4). For 
both PRM methods, class-wise RMSE and MAE became up 
to three times larger for dbh<30 cm when used with inputs 
predicted from site index and age than when applied with 
the field measurements while differences between PRM 
methods were of much smaller magnitude (Fig. 4). Even 
though there were some exceptions, (i.e. dbh between 50 
and 60 cm and 60 and 70 cm), the class-wise error metrics 
showed that the PRM method based on ̂D and D̂g outper-
formed the PRM method base D̂o , D̂g and N̂ and provided 

estimated frequencies that were closer to the observed ones 
for almost all dbh classes.

The two PRM methods applied to the field values of D 
and Dg or Do , Dg and N  provided class-wise R2 and global 
gR2 similar to those obtained when using ML (Fig. 5, 
Table 3). In general, the PRM method using Dg , Do and N 
had a slightly worse performance than ML and the PRM 
method based on D and Dg . General trends for both PRM 
methods and ML showed that class-wise R2 were high for 
the small and medium size classes ( dbh<50 cm) but then 
rapidly decreased for classes with dbh>60 cm. However, 
trees with dbh>60 cm are relatively infrequent in the 
study area and their relative importance in gR2 is small, 
being gR2 larger than 0.94 for both ML and the PRM 

Fig. 3   Age vs. Weibull parameters and standard deviation of 
the dbh distributions obtained by: ML, maximum likelihood. 
PRM(DD

g
) : PRM system of Eqs.  (8, 9) applied to the field values 

of D and D
g
 . PRM(

̂
DD̂

g
) : PRM system of Eqs.  (8, 9) used with 

values of ̂D and D̂
g
 obtained from age and site index. PRM(D

o
D

g
) 

and PRM(D̂
o
D̂

g
) : PRM system of Eqs. (8, 10) using the field values 

of N , D
o
 and D

g
 and their predicted values N̂ , D̂

o
 and D̂

g
 , resp. N: 

stand density. D
g
 : quadratic mean diameter. D

o
 : dominant diameter 

(mean diameter of the 100 thickest trees ha−1)
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methods applied to the field values of D and Dg and Do , 
Dg and N  (Fig. 5). When the PRM methods were applied 
with the predicted values of D and Dg or Do , Dg and N 
obtained from site index and age, gR2 decreased from 
97.80 to 69.92% for the PRM method using ̂D and D̂g 
and from 94.41 to 64.39% for the PRM method using D̂o , 
D̂g and N̂  (Fig. 5, Table 4). These values of gR2 (69.92% 
and 64.39%) show that both PRM methods were able to 
explain a significant portion of the variance of the dbh
-class frequencies even when applied to predicted values 
of D and Dg or Do , Dg and N  . Therefore, transforming P. 
sylvestris yield table using either of these PRM methods 
would provide useful information for forest management.

For all methods, gBias was negligible. In terms of 
gRMSE and gMAE , the PRM method using ̂D and D̂g 
also outperformed the PRM method based on D̂o , D̂g and 
N̂  and appeared as a better alternative to transform P. 
sylvestris yield tables into a diameter distribution model. 
However, PRM methods applied to field measurements 
of D and Dg and Do , Dg and N  had values of gRMSE and 
gMAE that were 288.07% and 28.47% and 169.35% and 
31.84% smaller than their counterparts using predicted 
values of Dg and D and Do , Dg and N  (Table 4). This 
again indicates that the most important source of error 
when recovering the dbh distributions is the chain of 
models used to obtain attributes needed by each PRM 
method and not the PRM method itself.

Results from the t test did not show significant 
differences at the 0.05 level between the absolute errors 
for PRM(

̂
DD̂g) and PRM(D̂oD̂g) for the first and the last two 

dbh classes (Table 4). For the second, third and fourth dbh 
classes, absolute errors for PRM(

̂
DD̂g) were significantly 

smaller than errors for PRM(D̂oD̂g) , for the fifth and sixth 
dbh class errors for PRM(D̂oD̂g) were significantly smaller 
than errors for PRM(

̂
DD̂g) . Considering all dbh classes 

together, absolute errors for PRM(
̂
DD̂g) were on average of 

smaller magnitude than errors obtained with PRM(D̂oD̂g) 
(Table 5).

4 � Discussion

The first step to transform the yield tables into dbh 
distribution models was the choice of the probability 
function to model dbh frequencies. Several probability 
functions, including the Gram-Charlier series (Meyer 1930), 
log-normal probability functions (Bliss and Reinker 1964), 
Jonshon’s SB probability functions (Rennolls and Wang 
2005; Gorgoso et al. 2012; Özçelik et al. 2016; Cosenza 
et al. 2019), beta probability functions (Gorgoso et al. 2012) 
and Weibull probability functions (e.g. Cao et al. 1982; 
Magnussen 1986; Poudel and Cao 2013; Mora et al. 2012; 
Cao and Coble 2014; Nanos and Sjöstedt de Luna 2017) have 
been used to describe dbh distributions for even-aged stands. 

Fig. 4   Class-wise error metrics 
(bias, root mean square error 
RMSE, mean absolute error 
MAE) for maximum likelihood 
(ML) and the studied PRM 
methods. PRM(DD

g
) : PRM 

system of Eqs. (8, 9) applied 
to the field values of D and D

g
 . 

PRM(
̂
DD̂

g
) : PRM system of 

Eqs. (8, 9) used with values of 
̂
D and D̂

g
 obtained from age 

and site index. PRM(D
o
D

g
) 

and PRM(D̂
o
D̂

g
) : PRM system 

of Eqs. (8, 10) using the field 
values of N , D

o
 and D

g
 and 

their predicted values N̂ , D̂
o
 and 

D̂
g
 , resp. N: stand density.Dg : 

quadratic mean diameter. Do : 
dominant diameter (mean 
diameter of the 100 thickest 
trees ha−1)
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Among the mentioned models, the Weibull probability 
function used in this study is presumably the most widely 
used to model dbh distributions. Several variants of the 
Weibull models can be found in the literature depending on 
(1) whether a 2-parameter (e.g. Bailey and Dell 1973) or a 
3-parameter (e.g. Cao 2004) Weibull function was used to 
model the size distribution and (2) whether the distribution 
function included truncation points to accommodate for 
specific characteristics of the corresponding sampling design 
(Mehtätalo et al. 2011; Nanos and Sjöstedt de Luna 2017) 
or not (e.g. Bailey and Dell 1973). We used 3-parameter 
Weibull models without truncation points and with a fixed 
location parameter � . Three-parameter Weibull distribution 
models with free � have been developed for other pine 
species in the Iberian peninsula (e.g. Palahí et al. 2006; Piqué 

et al. 2011) and have shown large flexibility because the size 
distribution model has an extra degree of freedom. However, 
a PRM system for Weibull distributions with free � requires 
developing models for additional stand variables (e.g. the 
minimum dbh ). Results from our study show that the most 
important source of error in the modeled sized distributions 
were derived or propagated from the regression models 
predicting the stand variables needed for the PRM methods. 
Thus, more parsimonious models would be less affected by 
the errors propagating from the regression models used to 
obtain stand attributes for the PRM systems, which, to some 
extent, can compensate their smaller flexibility.

Once a probability function has been chosen, it is necessary 
to apply a method to derive the dbh distribution parameters. 
In this study, we used PRM methods but other alternatives 

Fig. 5   Class-wise observed vs. predicted dbh frequencies for maxi-
mum likelihood (ML) and the studied PRM methods. PRM(DD

g
) : 

PRM system of Eqs.  (8, 9) applied to the field values of D and D
g
 . 

PRM(
̂
DD̂

g
) : PRM system of Eqs.  (8, 9) used with values of ̂D and 

D̂
g
 obtained from age and site index. PRM(D

o
D

g
) and PRM(D̂

o
D̂

g
) : 

PRM system of Eqs.  (8, 10) using the field values of N , D
o
 and D

g
 

and their predicted values N̂ , D̂
o
 and D̂

g
 , resp. N: stand density. D

g
 : 

quadratic mean diameter. D
o
 : dominant diameter (mean diameter of 

the 100 thickest trees ha−1)
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such as parameter prediction methods, PPM (e.g. Gorgoso 
et al. 2007; Siipilehto and Mehtätalo 2013), could be used 
with similar purposes. An advantage of PRM approaches over 
PPM approaches is that PRM ensures compatibility with the 
forest attributes they use to derive the parameters of the dbh 
distributions. This advantage is very important in the context 
of our study, where the main objective is the transformation 
of existing yield table models into dbh distribution models. 
Using PPM could result in diameter distributions providing 
values of Dg different from those already present in the yield 
tables and that is clearly an undesired feature for the resulting 
models as we aim at preserving compatibility of the dbh 
distribution models with their associated yield tables.

Differences between the two PRM methods under analysis 
showed that using ̂D and D̂g provided better results than using 
D̂o , D̂g and N̂ , globally and also for the dbh classes 20 cm 
to 30 cm, 30 cm to 40 cm and 40 cm to 50 cm. The PRM 
method based on D̂o , D̂g and N̂ provided better results for the 
classes 50 cm to 60 cm and 60 cm to 70 cm but the absolute 
values of RMSE and MAE of both PRM methods for these 
classes were orders of magnitude smaller than those observed 
for the 20 cm to 30 cm, 30 cm to 40 cm and 40 cm to 50 cm 
dbh classes. While, in general, the PRM method based on ̂D 

and D̂g provided better results, the PRM method, based on 
D̂o , D̂g and N̂ , was able to explain 64.39% of the variability 
of dbh-class frequencies. This result indicates that using a 
dominant variable as proposed by Ayuga-Téllez et al. (2014) 
in a PRM method can effectively recover a significant amount 
of information about a size distribution. Future research 
should explore other applications where PRM methods 
are applied to dominant attributes. For example, numerous 
yield tables such as Montero et al. (2008) yield tables for 
Pinus halepensis Mill.; Sánchez et al. (2008) yield tables for 
Pinus radiata or the tables analyzed here, contain models 
for stand density, mean tree height and dominant height and 
those attributes can be used to transform yield tables into 
tree-height distribution models. Similarly, numerous studies 
have shown that it is possible to accurately estimate dominant 
height and mean tree height using airborne laser scanning 
data (e.g. Næsset 2002; González-Ferreiro et al. 2012; Mauro 
et al. 2017). Those results suggest that there are potential 
applications of PRM methods based on dominant attributes 
to projects aiming at mapping forest structure and tree-height 
distributions.

One important feature of dbh distribution modelling 
studies is that, by definition, the response variable is a curve, 

Table 4   Global error metrics for maximum likelihood (ML) and PRM 
methods. PRM(DDg) : PRM system of Eqs.  (8, 9) applied to the field 
values of D and D

g
 . PRM(

̂
DD̂g) : PRM system of Eqs.  (8, 9) applied 

to values of ̂D and D̂
g
 obtained from age and site index using the cor-

responding models. PRM(D
o
D

g
) and PRM(D̂

o
D̂

g
) : PRM system of 

Eqs. (8, 10) using the field values of D
o
 , D

g
 and N and their predicted 

values D̂
o
, D̂

g
 and N , resp. ΔPRM(

̂
DD̂

g
) and ΔPRM(D̂

o
D̂

g
) : increase in 

each error metric and PRM method when attributes for the PRM sys-

tems of equations were predicted from age, site index and silvicultural 
regime using the yield table models. Increases are expressed in terms 
relative to the error metrics obtained using the field measurements of D 
and D

g
 and D

o
 , D

g
 and N . D ∶ mean diameter, D

o
 : dominant diameter, 

D
g
 : quadratic mean diameter and N ∶ stand density. ̂D , D̂

o
 and D̂

g
 rep-

resent predictions of D,D
o
 and D

g
 obtained from the yield table models

Metric ML PRM(DD
g
)   PRM(

̂
DD̂

g
)   ΔPRM(

̂
DD̂

g
)   PRM(D

o
D

g
) PRM(D̂

o
D̂

g
) ΔPRM(D̂

o
D̂

g
)

gBias − 9.95E-19 − 1.13E-18 − 7.00E-19 − 37.87% − 2.32E-19 − 2.77E-19 19.36%
gRMSE 0.0266 0.0261 0.0966 269.72% 0.0417 0.105 152.58%
gMAE 0.0132 0.0128 0.0498 288.07% 0.0196 0.0527 169.35%
gR2 97.7% 97.8% 70.0% -28.47% 94.4% 64.4% -31.84%

Table 5   Paired sample t test comparison of absolute value of errors 
obtained using PRM(

̂
DD̂

g
) and PRM(D̂

o
D̂

g
) for dbh classes. Differ-

ences between absolute value of errors are obtained subtracting the abso-
lute value of the errors for PRM(D̂

o
D̂

g
) to the absolute value of the errors 

for PRM(
̂
DD̂

g
) . Negative values indicate that errors in PRM(D̂

o
D̂

g
) are 

larger than those in PRM(
̂
DD̂

g
) . D ∶ mean diameter, D

o
 : dominant diame-

ter, D
g
 : quadratic mean diameter and N ∶ stand density. ̂D , D̂

o
 and D̂

g
 rep-

resent predictions of D,D
o
 and D

g
 obtained from the yield table models

dbh class 
(cm)

dbh � (5,20) dbh � (20,30) dbh � (30,40) dbh � (40,50) dbh � (50,60) dbh � (60,70) dbh � (70,80) dbh > 80 All dbh 
classes

Mean dif-
ference 
between 
errors in 
absolute 
value

1.80E-3 − 1.64E-2 − 5.69E-3 − 4.43E-3 1.11E-03 3.61E-4 − 5.84E-6 − 7.71E-8 − 2.91E-3

p value 5.72E-1 1.23E-4 3.56E-2 7.46E-4 4.93E-2 2.67E-3 6.72E-1 3.39E-1 1.83E-4
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or at least a set of frequencies or stocking levels by dbh 
classes. That characteristic of dbh distribution models has 
important implications for accuracy assessment purposes 
that typically require a step where the dimensionality of 
the problem is substantially reduced. Such dimensionality 
reduction can be achieved comparing the parameters of a 
distribution model obtained from field measurement to their 
respective counterparts derived from a PRM or PPM method 
(Gorgoso et al. 2007). This type of accuracy assessment 
reduces the problem to analyzing a small set of parameters, 
but this relatively straightforward set-up has interpretability 
problems because (1) for some dbh distribution models, 
i.e. Weibull models, it is difficult to translate errors or R2 
values for the estimation of a given distribution parameter 
to magnitudes with a physical interpretation and (2) in 
real application, it is not possible to know the true values 
that define a dbh distribution so comparisons are always 
made between two estimates. Goodness of fit statistical 
tests, such as the Kolmogorov–Smirnov test, are also used 
to evaluate dbh distribution models. However, if there is a 
high variability in the number of trees per plot, results from 
statistical tests can be also problematic because the power 
of these tests might substantially vary from plot to plot 
as a result of their different sample size. In addition, only 
rejections of the null hypothesis are meaningful when there 
is no control over the power of the test (Mauro et al. 2010). In 
our study, the number of trees per plot ranged from 24 to 193 
(Table 1); for that reason, we limited the use of statistical tests 
to the initial inspection where Weibull distribution models 
with fixed � were chosen and, for that step, we combined the 
use of statistical test with comparisons of the frequencies 
provided by models using fixed and variable � for 10 cm dbh 
classes. Finally, the use of global indexes in combination 
with class-wise error metrics (e.g. Gorgoso et al. (2007) and 
Siipilehto and Mehtätalo (2013)) provides the best alternative 
to evaluate dbh distribution models. Global indexes provide 
summarizations that have a physical interpretation and can be 
easily used for model selection purposes and class-wise error 
metrics provide a detailed description of where the modelling 
errors occur that complement the information that global 
indexes cannot provide. In particular, we find that errors for 
dbh classes are the metrics preferred and better understood 
by forest managers as they allow them to evaluate if a model 
is accurate enough for specific dbh classes that are of interest 
for them.

Modelling of dbh distributions appear frequently in two 
different contexts in the forest research literature: on one 
hand, in growth and yield modelling applications where 
the dbh distributions are ultimately predicted from stand 
age (e.g. Smalley and Bailey (1974), Diéguez-Aranda et al. 
(2006) and Piqué et al. (2011)) and, on the other hand, in 
forest structure mapping applications where dbh distributions 

are predicted from remotely sensed data (e.g. Maltamo et al. 
(2007); Breidenbach et al. (2008); Strunk et al. (2017); Arias-
Rodil et al. (2018) and Mauro et al. (2019)). In the first type of 
studies, models are developed to describe reference conditions 
for forest stands subject to specific silvicultural treatments 
while the second type of study aims at describing the current 
state of the forests. Numerous studies have explored both 
contexts separately, but to the best of our knowledge, there 
is no study where both, reference condition from models like 
the one developed here and current state conditions derived 
from remote sensing methods, are combined to guide forest 
management activities. We believe that an analysis of that 
kind is clearly needed to bridge the gap and make use of the 
synergies between these two different modelling contexts.

5 � Conclusions

The main conclusions from this study are first, both PRM 
methods for dbh allow explaining significant portions of the 
variability of the dbh-class frequencies and thus can provide 
useful information for forest managers in P. sylvestris stands with 
similar conditions to the study area. Second, the PRM method 
based on Dg and D was more accurate than the PRM method 
based on Do , N and Dg . However, errors propagating from the 
chain of models predicting the stand attributes required by each 
PRM method were more important than the PRM method used 
to recover dbh distributions.
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