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Abstract
• Key message  Parametric indirect models derived from stem analysis of dominant trees were more robust than rule-
based machine learning techniques for predicting Site Index of Scots pine stands as a function of climate.
• Context  The uncertainties derived from climate change make it necessary to develop new methods for representing the 
relationships between site conditions and forest growth.
• Aims  To compare parametric vs nonparametric approaches for modeling site index (SI) of Scots pine stands using 
bioclimatic variables.
• Methods  We used Random Forest, Boosted Trees, and Cubist techniques for directly predicting the SI of 41 research plots 
of Scots pine stands, and six parametric models for indirectly predicting SI using stem analysis data. As predictors, we used 
raster maps of 19 bioclimatic variables.
• Results  The fitted models explained up to ∼80% of the SI variability, using from five to nine bioclimatic predictors. Though 
the apparent performance of the parametric models was lower than the rule-based, their bootstrap validation statistics were 
noticeably higher.
• Conclusion  Parametric indirect models seemed to be the most robust modeling alternative.

Keywords  Pinus sylvestris L. · Stand growth modeling · Machine learning · Climate–growth relationships

1  Introduction

Climate change is presumed to cause a significant impact 
on forest ecosystems during the XXI century (Kirilenko 
and Sedjo  2007; Lindner et  al.  2008). In recent years, 
the uncertainties derived from forest growth prediction 
under climate change have given rise to an intense 
scientific production. In this regard, the development of 
growth–environment relationships is a preferred standpoint 
for adapting traditional empirical growth indicators to 
a changing climate (Fontes et  al.  2010). As site index 
(SI) is the most popular growth indicator for even-aged 
forest management (Skovsgaard and Vanclay 2008), the 
development of site index-environment models has become a 
general research goal (Wang et al. 2004; Seynave et al. 2005; 
Monserud et al. 2006).

The models developed for this purpose are usually based 
on the “direct” prediction of SI as a function of climatic, 
edaphic and/or physiographic predictors by means of a 
certain regression technique. Admittedly, these models have 
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been increasingly relying on machine learning approaches, 
which are becoming an attractive modeling alternative since: 
(1) they provide methods for automatic variable selection, 
(2) they usually allow for automatically capture nonlinear 
response–predictor relationships, and (3) some of them allow 
for automatically model interactions between predictors 
(González-Rodríguez and Diéguez-Aranda 2020). Reasons 
(2) and (3) become especially notable when we consider 
nonparametric learning techniques, such as the “rule-based” 
approaches, which have become a frequent resource for SI-
environment modeling (Crookstion et al. 2010; Barrio-Anta 
et al. 2020; Watt et al. 2021).

However, as noted by (Sabatia and Burkhart  2014), 
there is significant controversy regarding the robustness 
and interpretability of the rule-based models. Concerning 
robustness, the high amount of parameters and the model 
complexity implied by the “nonparametric” approach can be 
relevant sources of overfitting. Additionally, several authors 
(Weiskittel et al. 2011; Sabatia and Burkhart 2014) found a 
significant trend to the observational mean in the predicted 
values resulting from rule-based SI-environment models. 
These results could be denoting a low extrapolability 
power for these approaches, which may be a concerning 
drawback for studies that aim at producing cartographic 
outputs of forest productivity at regional scales. Concerning 
interpretability, the model complexity of rule-based 
approaches may make response–predictor relationships hard 
to interpret (Aertsen et al. 2010). In this context, using these 
models for prediction without an adequate interpretation 
may lead to ecological inconsistencies regarding the 
theoretical basis of tree growth. Because of these potential 
disadvantages of rule-based models, parametric approaches 
that provide similar modeling benefits (automatic variable 
selection, nonlinear response–predictor relationships and 
interactions between predictors) have become an attractive 
line of research in growth–environment relationships 
modeling (Watt et al. 2015, 2016; Zhu et al. 2019).

Moreover, the observed underperformance of many SI-
environment models, including rule-based approaches, might 
not be entirely due to shortcomings in the chosen regression 
techniques but also to potential inconsistencies between SI and 
the environmental predictors used (as suggested by Bontemps 
and Bouriaud 2014). These potential inconsistencies might 
be revealing that the “direct” modeling of SI is not really 
the optimal approach for linking biophysical site attributes 
with the underlying ecophysiological processes of tree 
growth. The reason for this might be that the traditional 
primacy of SI as productivity indicator in even-aged forestry 
responds exclusively to practical reasons (Skovsgaard and 
Vanclay 2008), as it lacks any direct ecological meaning. 
For overcoming the uncertainties of predicting SI, some 
studies have successfully modeled it in an “indirect” way, 
usually relying on other growth indicators or parameters 

that have a more sounding ecological background. For 
instance, Swenson et al. (2005) mapped the SI of Douglas-
fir forests in the USA as a function of the 3-PG process-
based model outputs. In this regard, it is important to note 
that traditional height growth equations (Hossfeld 1822; 
Gompertz 1825; Richards 1959) already provide nonlinear 
parametric forms for describing growth processes over time, 
which are ecologically meaningful as they rely on theoretical 
assumptions regarding population dynamics and metabolic 
ecology. As these nonlinear functions are mainly driven by 
a certain set of growth parameters, it is reasonable to think 
that these parameters are significantly correlated with the 
environmental factors that determine tree growth. Considering 
that SI is an immediate corollary of any age-dependent height 
growth equation, analyzing the relationships between climate 
and these growth parameters might be a consistent approach 
for “indirect” SI-environment modeling.

Our primary objective in this study was to test whether SI 
could be effectively predicted using parametric approaches 
that relate ecologically meaningful parameters from 
growth equations with climatic factors. For testing this, 
we compared two different ways of predicting SI of Scots 
pine stands in the northwest of Spain. On the one hand, we 
performed a direct SI prediction using rule-based models, 
in a similar way to previous studies (Weiskittel et al. 2011; 
Sabatia and Burkhart 2014; Barrio-Anta et al. 2020). On 
the other hand, we proposed a new method for developing 
SI-environment models by combining simple parametric 
models with the nonlinear assumptions behind the Hossfeld 
growth equation.

2 � Materials and methods

2.1 � Stand height data

The source of height growth data was a network of permanent 
research plots established by the Sustainable Forest 
Management Unit (UXFS) of the University of Santiago de 
Compostela, Spain. Overall, these plots correspond to pure, 
even-aged stands of Scots pine (Pinus sylvestris L.) located in 
the provinces of Lugo and Ourense, in the region of Galicia, 
and consisted of plantations in communal forests mainly 
located in mountainous sites (Fig. 1). For this study, we used 
only the first measurements of the network, carried out in 
1996-1997, in which stem analyses of dominant trees was 
carried out for a set 41 of the plots (González-Rodríguez and 
Diéguez-Aranda 2021).

Diameter at breast height (dbh) of all trees and total 
height were measured in each plot. Core samples were 
also bored in order to count the growth rings. The stand 
age (t), the number of stems in a hectare (N, trees/ha), 
the basal area (G, m 2/ha) and the dominant height (H, m; 

23   Page 2 of 14 Annals of Forest Science (2021) 78: 23



1 3

mean height of the 100 largest-dbh trees per hectare) were 
calculated from the previous measurements. A summary of 
the stand variables of the 41 plots considered in this study 
is shown in Table 1.

For each plot, the SI was estimated using the algebraic 
difference equation developed by Dieguez-Aranda et al. 
(2006) for this region, which is based on the Hossfeld growth 
function (Hossfeld 1822). This was done by projecting the 
observed dominant height (H) at the measurement age (t) to 
the reference age of the species ( tref  = 40 years):

being H2 the site index when t2 = tref  , H1 = H and t1 = t.
Stem analyses were carried out following the same 

procedure described by Dieguez-Aranda et al. (2005a, b). In 
each of these plots, a subset of two dominant trees per plot 
(i.e., a total of 82 trees), with heights and diameters differing, 
respectively, less than 5% to H and D (dominant diameter of 
the stand), were destructively sampled. Then, five to ten stem 
slices per tree were extracted along the trees’ height in order to 
count the growth rings. This allowed for relating tree heights (h) 
with ages (t), which were corrected using the method proposed 
by Carmean (1972) and modified by Newberry (1991). From 
the h-t dataset obtained through stem analysis, we fitted the 
Hossfeld growth equation for each plot:

being a, b and c the growth parameters for each plot.

(1)
H2 =

51.39

1 −

(

1 −
51.39

H1

)(

t1

t2

)1.277
,

(2)h(t) =
a

1 + bt−c
,

Fig. 1   Geographic extent and locations of the 41 Scots pine inventory plots where dominant trees were sampled

Table 1   Summary of stand variables for the 41 plot measurements

t stand age, N number of stems per hectare, G basal area, H dominant 
height and SI site index

Variable Mean St. dev. Min. Max.

t (years) 33 6 19 43
N (trees/ha) 1338 314 720 1984
G (m2/ha) 34.2 14.6 3.09 74.2
H (m) 12.3 4.11 4.22 21.4
SI (m) 14.7 3.43 8.3 21.4
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Once these basic parameters were estimated, we 
calculated another six growth-related derived parameters 
from Eq. 2: the age, height and growth ( tip , hip , gip ) at the 
inflexion point of the h-t curve; and the age, height and 
growth ( tmmg , hmmg , mmg) at the point of maximum mean 
growth in height. We selected both points in the growth 
curve because of their potential eco-physiological 
significance. An example of a fitted growth curve with 
inflexion and maximum mean growth points represented is 
shown in Fig. 2. The inflexion point is reached at the age of 
maximum growth rate, and corresponds to the second 
derivative of (2). It represents the turning point between 
“juvenile” growth and “mature” growth. The maximum 
mean growth occurs at the age when d

dt

(

h(t)

t

)

= 0 , and 
represents the moment from which the height/age ratio starts 
decreasing. The values and the specific methods to calculate 
each one of the nine alternative growth parameters estimated 
are summarized in Table 2.

2.2 � Climatic data

As a source of climatic data, we used the Worldclim 2 
bioclimatic dataset (Fick and Hijmans 2017). This dataset 
consists of a collection of raster maps with a spatial 
resolution of 1 km of climatic historical means for the 
period 1970-2000. The variables included in the maps are 
19 bioclimatic indicators often used in species distribution 
modeling because of its biological significance. Some 
of them represent annual trends, such as the annual 
precipitation (BIO12), whereas others represent differences 
between seasons, such as the temperature seasonality 
(BIO3), or extreme climatic events, such as the minimum 
temperature of the coldest month (BIO6). From these 
raster maps, we extracted the values of the 19 bioclimatic 
indicators corresponding to the 41 inventory plot locations, 
so each site was characterized by a SI value and a set of 
potential climatic predictors of forest productivity. A 

Fig. 2   Scatterplot of observed height vs age for one of the dominant trees included in the stem analysis dataset. The line represents the height 
predicted by Hossfeld growth equation. Filled markers represent the inflexion and the maximum mean growth points
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summary of the 19 bioclimatic variables proposed as 
potential predictors of SI is shown in Table 3.

2.3 � SI direct prediction

We used three different rule-based learning techniques for 
directly relating SI to the bioclimatic predictors: Random 

Forest, Boosted Trees and Cubist. The first and second 
approaches have been successfully used for SI prediction 
in other studies (Aertsen et al. 2010; Weiskittel et al. 2011; 
Sabatia and Burkhart 2014). In contrast, to our knowledge, 
the Cubist algorithm has never been used before in forest 
growth modeling. In order to provide a methodological 
background, we present hereunder a description of the 
basics and used procedures for fitting these techniques in 
the current study.

2.3.1 � Random forest regression

Random Forest (Breiman 2001) is a rule-based ensemble 
technique that performs a bagging procedure for developing 
an unbiased collection of regression trees. At each split 
of each regression tree, a randomly selected subset of the 
predictors is used for defining the node, thus granting a 
unique structure to each tree and avoiding between-tree 
correlation. This technique has been previously used for 
SI-environment modeling in other studies (Weiskittel 
et  al.  2011; Sabatia and Burkhart  2014; Barrio-Anta 
et al. 2020).

In this work, a Random Forest model was fitted using 
the R package randomForest (Liaw and Wiener 2002). 
For calibrating the number of trees, we fitted models with 
trees ranging from 100 to 10000 until we determined 
that 1000 trees were enough for the model results to 
be roughly stable, independently on the random seed. 
We calibrated the predictors’ subset size at each split, 
mtry, by trying different values ranging from 1/2 to 1/6 

Table 2   Summary of statistics and calculation methods of the nine 
growth parameters estimated for the dominant trees of the subset of 
41 plots. a, b, and c are the growth parameters from Hossfeld Eq. (2). 
tip , hip and gip are, respectively, the age, height, and growth rate at the 
inflexion point in (2) curve. tmmg , hmmg and mmg are the age, height, 
and growth rate at the maximum mean growth point in (2) curve, 
respectively

Variable Calculation method Mean St. dev. Min. Max.

a least squares esti-
mate

26.9 8.11 8.39 39.77

b least squares esti-
mate

473 201 127 798

c least squares esti-
mate

1.69 0.168 1.32 2.03

tip (years) (

2bc

c+1
− b

)
1

c
16.03 3.94 8.25 25.003

hip (m) a

1+bt−c
ip

5.26 1.52 2.02 7.97

gip (m/years) abctc−1
ip

(b+tc
ip
)
2

0.447 0.108 0.241 0.736

tmmg (years)
(b(c − 1))

1

c
28.8 7.05 14.9 45.4

hmmg (m) a

1+bt−c
mmg

10.5 3.04 4.03 15.9

mmg (m/years) a

tmmg(1+bt
−c
mmg

)

0.371 0.0915 0.196 0.603

Table 3   Summary of the 
Worldclim 2 bioclimatic 
variables corresponding to the 
41 Scots pine plot locations 
considered in this study. BIO2 is 
calculated as the monthly mean 
of tmax − tmin , being tmax and 
tmin respectively the maximum 
and minimum monthly 
temperatures. BIO3 is calculated 
as 100 BIO2

BIO7
 . BIO4 is 100sdt , 

being sdt the standard deviation 
of the annual distribution of 
daily tempreatures. BIO7 is 
calculated as BIO5 − BIO6 . 
BIO4 is the standard deviation 
of the annual distribution of 
daily precipitation

Var. Description Mean St. dev. Min Max

BIO1 Annual Mean Temperature 9.88 0.914 8.14 11.4
BIO2 Mean Diurnal Range 8.04 0.393 7.18 8.89
BIO3 Isothermality 38.3 1.97 34.2 41.7
BIO4 Temperature Seasonality 478 30.3 415 538
BIO5 Max. Temperature of Warmest Month 20.2 0.675 18.9 21.8
BIO6 Min. Temperature of Coldest Month -0.842 1.19 -2.77 1.94
BIO7 Temperature Annual Range 21.03 0.878 18.6 22.5
BIO8 Mean Temperature of Wettest Quarter 5.25 1.21 3.15 7.39
BIO9 Mean Temperature of Driest Quarter 15.9 0.636 14.7 17.5
BIO10 Mean Temperature of Warmest Quarter 16.11 0.626 14.9 17.5
BIO11 Mean Temperature of Coldest Quarter 4.504 1.24 2.34 6.67
BIO12 Annual Precipitation 1402 116 1296 1686
BIO13 Precipitation of Wettest Month 182 19.3 166 228
BIO14 Precipitation of Driest Month 41.5 2.98 31.1 46.5
BIO15 Precipitation Seasonality 41.1 2.303 37.3 47.6
BIO16 Precipitation of Wettest Quarter 519 49.5 479 638
BIO17 Precipitation of Driest Quarter 153 8.27 130 167
BIO18 Precipitation of Warmest Quarter 174 11.2 148 198
BIO19 Precipitation of Coldest Quarter 492 60.06 442 632
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of the total amount of predictors. In order to enhance 
the stability of these fittings, we performed a repeated 
tenfold cross-validation. For selecting the least amount of 
necessary predictors, we carried out a recursive variable 
elimination (RVE) procedure similar to the one applied 
by Weiskittel et al. (2011). At each step of this procedure, 
the least important predictor (measured by the decrease in 
accuracy due to its removal from the model) was dropped 
off from the set. Then, a new model with the remaining 
predictors was fitted. This was repeated until there were 
only two predictors left. The best alternative along the 
RVE path was considered to be the one that provided 
a reasonably high predictive performance, subjected 
to have the least amount of predictors. The criteria we 
used for this purpose was to look for the model previous 
to a significant decrease in R2 (square of the Pearson’s 
correlation between observed and predicted SI) due to the 
removal of a certain predictor. Specifically, we selected 
the model for which dropping off one predictor produced 
a decrease in R2 higher than the 90th percentile of all the 
decreases distribution in the RVE path.

2.3.2 � Boosted trees regression

Simi la r ly  to  Random Fores t ,  Boosted  Trees 
(Valiant 1984) is a rule-based ensemble technique that 
combines multiple weak learners (regression trees) to 
enhance performance in the final prediction. Unlike 
Random Forest, Boosted Trees ensemble is hierarchized, 
being each additional tree a regressor of predictive 
residuals of previous trees.

In this study, we fitted a Boosted Trees model using the 
R package gbm (Greenwell et al. 2019). Firstly, we set the 
optimum values of the calibration constants through a 10 
times repeated tenfold cross validation (maximising R2 ). 
These constants were: number of iterations (i.e., number 
of trees), interaction depth (maximum number of levels 
of nested nodes in each tree), and shrinkage (penalization 
applied to each tree’s residual prediction). Once the 
calibration constants were defined, we performed an RVE 
identical to the one applied to Random Forest for selecting 
the minimum necessary number of predictors.

2.3.3 � Cubist regression

Cubist (Quinlan 1992) is a rule-based technique that 
performs a boosting-like procedure for enhancing the 
predictive performance by nestedly re-predicting the 
residuals throughout a defined number of iterations 
usually known as “committees”. The significant 
difference with Boosted Trees is that in Cubist the 

fitted models for re-predicting residuals are not proper 
regression trees but a tree-like hierarchized ensemble 
of linear models. At each tree split, a linear model 
(which may not include the node predictor) is fitted 
for predicting the response. As the linear models at the 
branch ends of trees can make predictions outside the 
response observed range, a correction factor usually 
called extrapolation correction can be applied for 
controlling the coherency of the predicted values. For 
allowing this approach to be comparable to the Random 
Forest and Boosted Trees fitted models, we set the 
extrapolation correction as a fixed value of 100, which 
means that the predicted values will be strictly forced 
to be inside the observational range. Cubist algorithm 
also includes a nearest-neighbor parameter that allows 
for correcting each prediction based on similarity to 
observations used in the training set.

We fitted a Cubist model using the R package Cubist 
(Kuhn and Quinlan  2018). Firstly, we calibrated the 
number of committees and the number of neighbors for 
correction through a 10-times repeated 10-fold cross 
validation (based on R2 maximization). After this, we 
performed an RVE procedure similar to the ones applied 
to Random Forest and Boosted Trees. The importance 
of each predictor was measured by the usage rate, which 
indicates the frequency of each predictor as node-ruler or 
as linear explainer throughout the committees.

The RVE path of the three rule-based models fitted is 
shown in Fig. 3.

2.4 � SI indirect prediction

We proposed an alternative indirect methodology for 
SI prediction based on multivariate linear models. This 
methodology consisted of two stages: (1) predicting 
the nine growth parameters we previously estimated (a, 
b, c, hip , tip , gip , hmmg , tmmg , mmg) as a function of the 
WorldClim 2 bioclimatic variables, and (2) to estimate SI 
as a function of the new climate-sensitive predictions of 
growth parameters ( ̂a , b̂ , ĉ , ĥip , t̂ip , ĝip , ĥmmg , t̂mmg , ̂mmg).

For the first stage, we used stepwise regression technique 
using the R language package stats (R Core Team 2018) 
for carrying out a generalized least squares coefficients 
estimation (generalized linear model, GLM) and automatic 
variable selection. This technique has been recurrently used 
in forestry, and specifically for SI-environment modeling 
(Codilan et al. 2015; Tange and Ge 2020). For attaining 
model parsimony, we used Akaike’s information criterion 
(AIC), so the fitting procedure involved the minimization 
of the following loss function:
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Fig. 3   Recursive variable elimination paths for the three rule-based models fitted
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being k a penalty p the number of parameters in the  
model, N the number of observations, and MSE the mean 
square error. For calibrating k, we used a tenfold cross-
validation procedure. Within this procedure, we chose the 
best k for each case that maximized the R2 , submitted to 
provide significant coefficients at a minimum confidence 
level of 90%.

Regarding the second stage of indirect SI modeling, 
we developed different transformations derived from 
Eq. (2) for extracting SI out of the predicted values of the 
nine alternative growth parameters. From Eq. (2), we can 
estimate the site index as:

being a, b and c the previously fitted parameters for each 
plot. Considering this, we could also perform an indirect 
climate-sensitive SI prediction ( SIabc ) as follows:

being â , b̂ and ĉ the growth parameters predicted as a 
function of the bioclimatic explainers.

Combining Eq. (4) with the calculation methods 
summarized in Table 2 allowed us for predicting SI from 
different sets of three growth parameters. We accomplished 
this by isolating a and b parameters from equations 
in Table  2 and substituting in Eq.  (4). As a result, we 
developed six different methods for estimating SI from the 

(3)AIC = k ⋅ p + N logMSE,

(4)SI =
a

1 + bt−c
ref

,

(5)SIabc =
â

1 + b̂t−ĉ
ref

,

nine alternative growth parameters predicted, which are 
summarized in Table 4.

As a “control” method for allowing a reliable comparison 
between direct rule-based and indirect parametric models, 
we also fitted a direct stepwise regression (GLM) for 
predicting SI as a function of the 19 WorldClim predictors 
using the same procedure described in this section for 
predicting the nine growth parameters.

2.5 � Model evaluation

For testing the robustness of the fitted models we performed 
a bootstrap validation procedure based on the 632+ rule 
(Efron and Tibshirani  1997), which we already tested 
in a previous study (González-Rodríguez and Diéguez-
Aranda 2020). We calculated the bootstrap error of each 
model fitted through a resampling set of 100 realizations per 
model using the R package boot (Canty and Ripley 2017). 
Then, we estimated the overall predicitive error of each 
model by doing a weighted mean of statistics between 
apparent and bootstrap performance:

where MSEtraining is the apparent mean square error (MSE), 
MSEbootstrap is the mean bootstrap MSE, MSE632+ is the 
corrected MSE, and w is the weight parameter that accounts 
for the observed relative overfitting and the no information 
rate (i.e., the potential error if observed and predicted values 
were completely uncorrelated).

Once we carried out the bootstrap validation, we 
examined the plots of residuals to detect possible 
patterns of heteroscedasticity or regression to the 
mean in the fitted models. In addition, we assessed 
the role of each predictor within the SI model with the 
best validation performance in order to evaluate its 
ecological coherence. Considering the potential difficulty 
of directly understanding the behaviour of the fitted 
models, we based our interpretation on the visualization 
of standardized predictors against predicted SI values. 
To facilitate this task, we preferred to focus on LOESS 
fitted curves rather than directly analysing the point 
clouds. This interpretation method gave us an overview 
of the role of each predictor throughout the different site 
conditions that exist in the training dataset.

3 � Results

A summary of goodness-of-fit statistics for the SI models 
fitted is shown in Table 5. Regarding model calibration, 
Random Forest had an optimum mtry value of 2/3 and 
Boosted Trees had optimum values of 20 for the number 

(6)MSE632+ = (1 − w)MSEtraining + wMSEbootstrap,

Table 4   Summary of the equations used for indirectly predicting SI 
as a function of the ten growth parameters

Model label Equation Variables

ABC SIabc =
â

1+b̂t−ĉ
ref

â,b̂,ĉ

IP1
SIip1 = ĥip

1+
1

2ĉ∕(ĉ+1)−1

1+

t̂c
ip
t−ĉ
ref

2ĉ∕(ĉ+1)−1

ĥip , t̂ip , ĉ

IP2
SIip2 = ĝipt̂

2ĉ
ip

(1+
1

2ĉ∕(ĉ+1)−1
)
2

1+

t̂ĉ
ip
t−ĉ
ref

2ĉ∕(ĉ+1)−1

ĉt̂2ĉ+1
ip

2ĉ∕(ĉ−1)−1

ĝip , t̂ip , ĉ

MMG1
SImmg1 = ĥmmg

1+
1

ĉ−1

1+

t̂ĉmmgt
−ĉ
ref

ĉ−1

ĥmmg , t̂mmg , ĉ

MMG2
SImmg2 = ̂mmgt̂mmg

1+
1

ĉ−1

1+

t̂ĉmmgt
−ĉ
ref

ĉ−1

̂mmg , t̂mmg , ĉ

MMG3
SImmg3 = ĥmmg

1+
1

ĉ−1

1+

(ĥmmg∕ ̂mmg)ĉ t−ĉ
ref

ĉ−1

̂mmg , ĥmmg , ĉ
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of iterations (trees), one for the interaction depth and 0.1 
for the shrinkage penalization. The optimum constants for 
the Cubist model where 20 committees and nine neighbors 
for correction. The parameter estimates and p values of 
the stepwise models fitted for predicting the nine growth 
parameters are presented in the Appendix (Table 6). All 
the slope parameters estimated for these models were 
significant at least at 95% level of confidence. The average 
amount of predictors per models was three, having a 
maximum of seven for the tip model and a minimum of 
zero for the c model, which resulted a null model.

Concerning model performance,  the rule-based 
approaches provided the highest apparent values of R2 , 
having the Random Forest model the best performance 
( R2=0.802), followed by Boosted Trees and Cubist. In 
contrast, the indirect parametric models had significantly 
smaller values of apparent R2 , with a maximum value 
of 0.384 for the case of MMG1. The direct GLM had 
apparent performance slightly higher than MMG1 ( R2

=0.414), but much lower than the rule-based approaches. 
Overall, the models fitted had a number of predictors 
ranging from five (MMG1, MMG2, MMG and Boosted 
Trees models) to nine (IP1, IP2 models). Considering our 
variable selection criterion, the three rule-based models 
fitted reached the maximum cross-validated performance 
using three predictors, which were, in all cases, BIO1, 
BIO2 and BIO3. The AIC-based variable selection for 
the direct GLM also produced an optimum number of 
predictors equal to three, which where BIO7, BIO8, 
BIO9.

Concerning bootstrap validation, rule-based models 
presented a very high relative overfitting rate, ranging 
from 54% to 72%. Among these models, Cubist 
resulted in the model with the best performance both in 
NRMSE632+ (0.206) and R2

632+
 (0.285) and also with the 

lowest relative overfitting rate (54%). The direct GLM 
seemed extremely prone to overfitting, with a very low 
validation performance ( R2

632+
 = 0.136) and a relative 

overfitting rate reaching 80%. In comparison, the fitted 
indirect parametric models produced more variable 
bootstrap performances, with R2

632+
 values ranging 

from 0.187 to 0.298, and relative overfitting rates (R) 
ranging from 0.311 to 0.581. Models ABC, MMG2, and 
MMG3 produced low performances but also had very 
high overfitting rates. Model IP2 had a poor apparent 
performance but also showed a low relative overfitting 
rate. Models MMG1 and IP1 were the ones with the best 
overall bootstrap performance, presenting a high R2

632+
 , a 

low NRMSE632+ and a moderate relative overfitting rate. 
Considering that the performance estimates of MMG1 
were slighltly higher than IP2, we selected this model as 
the best parametric alternative for subsequent analyses. 
The final form of MMG1 model, after combining the 
corresponding equation in Table 4 with the linear models 
fitted was as follows:

where a0=-117.677 , a1 = 5.132701, a2=0.159120 , a3=-
8.09051 , a4 = 0.00283399, a5=46.4528 , a6=1.34853 , a7
=-47.092005 , and a8 = 1.69057.

Plots of observed SI vs predicted SI and predicted 
SI vs residuals for Cubist and MMG1 models are 
shown in Fig.  4. After analyzing the model residuals 
of both approaches, we did not found any significant 
trace of heteroscedasticity. In order to support model 
interpretation, a plot of LOESS curves that represent 
predicted SI vs. standardized predictors for MMG1 model 
is presented in Fig 5.

(7)SI =
a0 + a1BIO3 + a2BIO4 + a3BIO9

1 + a4(a5BIO2 + a6BIO4 + a7BIO7)
a8
,

Table 5   Summary of the 
number predictors and 
parameters, calibration 
constants and goodness-of-fit 
statistics of the models fitted. 
p is the number of predictors 
included in the model an R is 
the relative overfitting rate

Model R2 p Predictors NRMSE
632+ R2

632+
R

GLM 0.414 3 BIO7, BIO8, BIO9 0.259 0.136 0.804
Random Forest 0.802 3 BIO1, BIO2, BIO3 0.216 0.265 0.724
Boosted Trees 0.657 3 BIO1, BIO2, BIO3 0.212 0.268 0.671
Cubist 0.539 3 BIO1, BIO2, BIO3 0.206 0.285 0.535
ABC 0.339 6 BIO4, BIO5, BIO6, BIO7, BIO8, BIO9 0.235 0.203 0.512
IP1 0.372 9 BIO3, BIO4, BIO9, BIO2, BIO7, BIO12, 

BIO14, BIO18, BIO19
0.205 0.292 0.332

IP2 0.272 9 BIO7, BIO8, BIO9, BIO2, BIO4, BIO12, 
BIO14, BIO18, BIO19

0.215 0.192 0.311

MMG1 0.384 5 BIO3, BIO4, BIO9, BIO2, BIO7 0.204 0.298 0.313
MMG2 0.351 5 BIO7, BIO8, BIO9, BIO2, BIO4 0.223 0.187 0.581
MMG3 0.375 5 BIO7, BIO8, BIO9, BIO3, BIO4 0.218 0.219 0.529
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4 � Discussion

The fitted models explained from 10% to 80% of the 
SI variability. The apparent performance range of the 
rule-based models fitted is similar to the observed in 
other studies for Random Forest ( R2=0.68, Weiskittel 
et  al.  2011; R2=0.59, Barrio-Anta et  al.  2020) and 
Boosted Trees ( R2 from 0.44 to 0.64, Aertsen et al. 2010). 

Similarly, the performance of the parametric models 
fitted ( R2

∼ 0.27-0.38) was on average near the spectrum 
that can be found in literature (24%-27%, Monserud 
et  al.  2006, 31%-52%, Aertsen et  al.  2010, 34%-42%, 
Sabatia and Burkhart 2014 of explained variability).

Among the rule-based approaches, Random Forest 
showed the best apparent R2 . However, its bootstrap 
validation performance was very similar to Boosted 

Fig. 4   Plots of: a observed SI vs predicted SI for MMG1; b predicted 
SI vs residuals for MMG1; c observed SI vs predicted SI for Cubist; 
and d  predicted SI vs residuals for Cubist. The dashed line in plots 

a and c represents the linear trend of observed vs predicted SI, while 
the solid line in plots b and d represents the LOESS-smoothed trend 
of residuals vs predicted SI 
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Trees and slightly lower than Cubist, which, despite 
being the model with the lowest apparent performance 
of the three, resulted in the most robust alternative. 
Though the differences in R2

632+
 between the three tested 

techniques might be too slight to undoubtedly conclude 
that Cubist is the most suitable rule-based technique 
for SI-environment modeling, its lesser tendency to 
overfitting should be considered an important advantage. 
However, even considering the better robusticity shown 
by Cubist, the relative overfitting rates found for rule-
based techniques are still very high in comparison with 
the ones provided by some indirect parametric models. 
We think that this could be an important concern for 
using these rule-based models for predicting SI out of 
the frame of this study. Using a complementary dataset 
for validation would be a necessary line of action for 
addressing this uncertainty in further research.

Regarding indirect parametric models, we observed 
that models based on the combination of growth + 
age (IP2 and MMG2 models) had lower performance. 
In contrast, combinations of height + age (IP1 and 
MMG1) had the highest performance. The fact that 
MMG1 outperformed the rest of the parametric models, 
both in apparent and validation statistics, may suggest 
that hmmg and tmmg are more effective than the rest of 
growth parameters for representing growth–climate 
relationships. In this context, using hmmg and tmmg directly 
for dominant height projection—as t1 and H1 inside 
Eq. 1—would be a reasonable modeling alternative to 
explore in further research.

Despite the higher apparent performance of the Random 
Forest model, the observed robustness of MMG1 may 
make this parametric approach a better alternative for SI 
prediction. This finding runs parallel to the results found 

Fig. 5   LOESS curves of predicted SI vs standardized predictors for 
MMG1 model. Fore ease of visualization lines are represented in 
different styles (dark grey + dash-dot line: BIO2, black + solid line: 

BIO3, black + dashed line: BIO4, grey + dotted line: BIO9, and light 
grey + dash-dot line: BIO7)
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by Sabatia and Burkhart (2014), where a parametric model 
outperformed Random Forest, in terms of robustness and 
reliability. After checking the observed vs predicted SI 
values (Fig. 4), we found a moderate regression to the 
mean in both models. Besides, the range of predicted 
values was slightly narrower for Random Forest than for 
the parametric approach. This regression to the mean 
was also found in previous studies (Hamel et al. 2004; 
Weiskittel et al. 2011), and it has been suggested to be 
a common characteristic of the SI-environment models 
(Sabatia and Burkhart 2014).

The comparison between performance statistics of 
the direct GLM and MMG1 revealed that the indirect 
approach was more robust, being less prone to overfitting 
than the direct model. We think this finding might imply 
that, indeed, the indirect methods could be more effective 
at capturing the existing relationships between tree growth 
and climate and, hence, more ecologically consistent than 
direct SI modeling approaches. However, the proposed 
indirect method has got also some potential drawbacks. 
Regarding data acquisition, stem analysis is much more 
expensive and technically complex than a simple forest 
inventory of temporal research plots. We think that this is 
a crucial aspect to consider for practical applications of 
indirect SI modeling.

Concerning the ecological interpretation of MMG1 
model, assessing the role of each predictor in Eq. 7 is 
not a straightforward task, as some predictors appear 
both in the numerator and in the denominator of the 
model form, apparently with a similar behaviour. The 
analysis of LOESS curves in Fig. 5 revealed that, overall, 
BIO2 and BIO3 had a strong positive influence on SI. 
As these variables are proportional to thermal diurnal 
ranges, and therefore potential indicators of altitude and 
continentality (Oliver 2005), we propose two possible 
reasons for their impact on SI: (1) altitude can imply 
cooler winter and night temperatures, which is positive 
for satisfying the chilling needs of the species, and (2) 
continentality may imply the absence of salty sea winds, 
potentially harmful for Scots pine (Øyen et  al. 2006; 
Savill 2013). A special comment about the chilling effect 
is needed. Admittedly, certain conifer species, especially 
those naturally distributed in cold regions, such as Scots 
pine (Øyen et  al.  2006), might suffer from a certain 
stress on carbon balance due to high respiration rates 
during mild winters (Pâques 2013; Smith et al. 1995). 
We already found this to be an important restriction for 
growth of radiata pine in the same region in a previous 
study (González-Rodríguez and Diéguez-Aranda 2020). 
We think this may be a particular feature of the studied 
region, characterized by a very humid and temperate-
warm oceanic climate (predominantly Csb climate with 

Cfa and Cfb local variations, according to the Köppen-
Geiger classification, updated by Kottek et al. 2006).

The predictor BIO9 showed, overall, a very slight 
positive influence on SI, occurring mostly on the second 
half of its range. We hypothesize that this slight trend 
may represent the positive influence of temperatures for 
growth during the growing season, specially for coldest 
sites at higher altitudes (corresponding to Cfb local 
variants). Thought this predictor should also capture the 
negative effect of summer drought stress on growth, the 
high precipitation registered in the set of sampled sites—
with a minimum of 1246 mm—may make the latter a not 
significant constraint for growth. BIO4 and BIO7 showed 
a similar influence on predicted SI, having a maximum 
at the middle of their ranges, showing, respectively, a 
positive and negative contribution on growth towards the 
extremes. In the case of BIO7, low values of this predictor 
may have a negative influence on SI because of the same 
reason explained for BIO2 and BIO3. High values of BIO7 
may contribute negatively to SI representing the effect of 
frost stress factors in very contrasted temperature regimes. 
Finally, concerning BIO4, the positive effect on SI of its 
left tail may be also related to the influence of frost stress 
in sites with very regular precipitation regimes, associated 
with high altitudes (Cfb climates). 

5 � Conclusion

We fitted a set of rule-based and indirect parametric 
models for predicting site index (SI) of Scots pine stands 
as a function of bioclimatic variables. The models fitted 
explained from ∼10% to ∼80% of the response’s variability. 
The rule-based approaches tested showed very high 
apparent performance statistics, being Random Forest the 
one with the highest R2 . However, the bootstrap validation 
procedure carried out revealed that these techniques were 
also very prone to overfitting, and besides their actual 
differences in performance were little. In contrast, indirect 
parametric models showed a much lower overfitting rate. 
Two of these models, MMG1 and IP1, had better bootstrap 
error estimates than the rule-based approaches. Specifically, 
MMG1, a parametric model derived from height and age 
at the maximum mean growth point, showed the highest 
validation R2 among the set of fitted models, explaining up 
to 38% of the SI variability. According to this model, SI was 
mainly conditioned by different measures of continentality, 
but also by heat and rainfall variables. We concluded that, 
for the specific scope of our study, the use of an indirect 
approach based on easily interpretable parametric models 
was a better modeling alternative than the direct prediction 
of SI using rule-based techniques.
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