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Abstract

+ Key message We found high accuracy classification (Fyeasure = 95%, on cross-validation) of Araucaria angustifolia
(Bertol.) Kuntze, an endangered native species, and Hovenia dulcis Thunb. an aggressive, invasive alien species in
WorldView-2 multispectral images. In applying machine learning algorithms, the spectral attributes mainly related to
the near-infrared band were the most important for the models.

« Context 1t is difficult to classify tree species in tropical rainforests due to the high spectral response’s diversity of existing
species, as well as to adjust efficient machine learning techniques and orbital image resolution.

« Aims To explore the spectral and textural response of an endangered species (A. angustifolia) and an invasive species
(H. dulcis) in WorldView-2 multispectral images, testing its recognition capability by machine learning techniques.

+ Methods Weused a WordView-2 (2016) image with 0.5-m spatial resolution. Then we manually clipped the canopy area of the
two species in this image using two compositions: True color composition (R=660 nm, G=545 nm, B=480 nm) and near-infrared
composition (NIR-2=950 nm, G=545 nm, B=480 nm). Thus, we applied spectral and textural descriptors (pyramid histogram of
oriented gradients—PHOG and Edge Filter), which selects the most representative features of the dataset. Finally, we used
artificial neural networks (ANN) and random forest (RF) for tree species classification.

+ Results The species classification was performed with high accuracy (Fneasure = 95%, on cross-validation), essentially for
spectral attributes using the near-infrared composition. RF surpassed the ANN classification rates and also proved to be more
stable and faster for training and testing.
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« Conclusion The WorldView-2 multispectral sensor showed the potential to provide sufficient information for classifying two
species, proving its usefulness in this phytophysiognomy where hyperspectral sensors are generally used for this type of

classification.

Keywords Random forest - Artificial neural network - Genetic algorithm - Textural attributes - Hovenia dulcis - Araucaria

angustifolia

1 Introduction

The diversity of tree species is essential for maintaining terres-
trial ecosystems; therefore, surveying diversity becomes in-
creasingly important in conservation and sustainable forest
management (Wulder et al. 2004; McDermid et al. 2009).
The Atlantic Rainforest is a tropical forest biome which covers
the southeast, south, and coastal regions of Brazil, eastern
Paraguay, and a portion of northern Argentina. It is one of the
richest forests in terms of plant biodiversity on the planet. Such
diversity is related to the high degree of endemism in some
regions, with very heterogeneous plant phytophysiognomies.
Variations in species richness are linked to factors such as lat-
itude, altitude, rain precipitation, and soil (Colombo and Joly
2010). Its original vegetation cover has been reduced due to
anthropogenic disturbances mainly related to agricultural ex-
pansion, being estimated as 16% in 2009 (Ribeiro et al. 2009)
and 28% in 2018 (Rezende et al. 2018).

Mixed Ombrophylous Forest (MOF) is part of the Atlantic
Rainforest, and considered to be one of the most threatened
phytophysiognomies with a loss of 75.6% of its original cover
De Gasper et al. (2013). It is also known as araucaria forest
due to the presence of A. angustifolia, which results in a
unique aspect of forest stratification due to its peculiar mor-
phological characteristics with high crowns, and two well-
defined vertical strata. This species has paramount importance
for the ecosystem in which it is found for all aspects, i.c.,
ecological, economic, historical, social, and cultural.
However, this species has been intensively exploited since
the nineteenth century for its high economic value for both
timber use and seed trade (Andersson 2005). Its territory has
been reduced to a minimum fraction, which according to the
International Union for the Conservation of Nature and
Natural Resources (IUCN), classified araucaria as Critically
Endangered (Thomas 2013). Recent publications point out
that projections for the complete extinction of the species are
estimated for the year 2070 due to its overexploitation and
climate change if conservation measures are not improved
(Wilson et al. 2019).

Another problem faced in MOF is the bioinvasion of tree
species. A particular problem is due to H. dulcis, a species
introduced in South America for ornamental and forestry pur-
poses such as wood use (Zenni and Ziller 2011). However,
this species easily established and spread in the region due to
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the similarity of the environmental conditions to its natural
habitat. The dispersion of this species mainly occurs by
medium-sized mammals such as armadillos (Carvalho
1994), skunks (Caceres and Monteiro-Filho 2001), and bats
(Zortea 1993). Another determining feature is the intense pro-
duction of seeds with a high germination rate, especially
where there are reductions in litter deposition and indications
of anthropic disturbances in the forest (Dechoum et al. 2015).
There is a strong invasion of H. dulcis in the MOF remnants in
the Center-South region of Parana due to several favorable
factors (Figueiredo et al. 2013; Nauiack 2015).

One of the main challenges for forest conservation is
obtaining large-scale information to monitor biodiversity
(Sothe et al. 2020); it is also essential to know the composition
of'tree species and their spatial distribution patterns (Nagendra
2001). This access to diversity became more achievable by
increasing the spatial, spectral, temporal, and radiometric res-
olutions of sensors embedded in satellites or Remotely Piloted
Aircrafts (RPAs) (Kwok 2018). Another factor which contrib-
uted to this process was the emergence of machine learning
techniques and their ability to operate with complex calcula-
tion issues, which can be progressively applied to solve prac-
tical problems. For example, there is artificial neural networks
(ANN), one of the most widespread classification algorithms
(Samborska et al. 2014; Simioni et al. 2020), and random
forest (RF), widely used in image classification from remote
sensors (Belgiu and Dragu 2016).

Even with all this technological development, the classifi-
cation process is constantly being improved. In classifications
of boreal forests and European tundra, Immitzer et al. (2012)
found excellent results using RF with WordView-2 images,
showing the potential to identify 20 forest species with 70%
accuracy. However, reproducing a forest inventory using this
same methodology in a tropical rainforest where stratification,
the density of individuals, and diversity of species are high
becomes a challenge for the currently available resources.
Ferreira et al. 2016a, b, Ferreira et al. 2019) reached 8 species
for the same series of sensors (WolrdView-3), but in semi-
deciduous seasonal forests. Sothe et al. (2020) managed to
recognize 16 species, although using hyperspectral sensors
attached to an RPA, with ample spatial resolution.

Given the importance of identifying forest species by sat-
ellite images in forest management programs, this study aimed
to compare different classification models for two forest
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species with a marked presence in MOF, namely H. dulcis, an
invasive alien species, and A. angustifolia, which is a critically
endangered native species. To do so, we compared the use of
spectral and textural descriptors (pyramid histogram of orient-
ed gradients—PHOG and Edge Filter) optimized by data min-
ing (genetic algorithm—GA) and submitted to two classifiers:
random forest—RF and artificial neural network—ANN.
Thus, we sought to explore the spectral and textural response
of'these species in WorldView-2 multispectral images. This is
the first time that a detailed and comparative analysis of these
descriptors has been applied to these species, especially for
H. dulcis.

2 Materials and methods

We used a 2016 WorldView-2 properly preprocessed image
in which we selected two spectral compositions. Then we
collected samples in pre-established areas (manual cropping
of the crowns) from the two tree species (A. angustifolia and
H. dulcis). Next, we compared the selected compositions
using spectral and textural attributes (PHOG and Edge
Filter). We applied data mining to select better features (ex-
cept for Edge Filter). Finally, we applied the two classifiers
(ANN and RF), in which each dataset was tested separately in
each classification scheme, generating 12 models. The species
were classified together in each model. This process can be
seen in the flowchart in Fig. 1.

2.1 Study area and species

A large “continuum” of native MOF can be found in the sec-
ond plateau of Parana state, Brazil, located in the central west
region. This area is preserved by three National Conservation
Units (NCU) which cover about 20km? for research,
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sustainable management, and species preservation. This large
area plays an important role in Parana’s water structure, as it is
a watershed in the three large basins of the state—Ivai, Tibagi,
and Iguacu. According to the Water and Land Institute of
Parana (IAT), these three NCUs are areas of relevant ecolog-
ical interest, being entitled as a strategic area for environmen-
tal conservation (IAT 2007).

The present study was carried out in the vicinity of these
conservation units in the Imbituvao watershed, which belongs
to the Tibagi watershed. The study area is within the rural
properties inserted in the project called “Imbituvao”, carried
out by the Department of Forestry at the Midwestern State
University. This region presents several MOF fragments with
a high degree of H. dulcis infestation and the presence of
A. angustifolia. 1t also presents a heterogeneous and
fragmented landscape, possibly due to the use and occupation
of land by agriculture. Its geological structure predominantly
consists of sandstone with texture varying from fine to coarse
(Salamuni et al. 1969). The predominant soil types are red-
yellow dystrophic ultisol and nitisol with aluminum oxides
(Mazza et al. 2005). The area has a wavy and rugged topog-
raphy with an average altitude of 800m. The climate is tem-
perate subtropical with mild summers, winters with severe and
frequent frosts, without a dry season. The precipitation is close
to 200mm month~' with an annual average temperature of 18°
C (Maack 2017). We selected four areas (A1, A2, A3, and A4)
of 206,000 m*> 167,700 m* 220,000 m, and 336,000 m’,
respectively, for sample collection (Fig. 2).

A. angustifolia is a dominant tree species of the MOF. It is
an angiosperm conifer evergreen, with an unmistakable ap-
pearance. It has a trunk, usually single and cylindrical, which
can reach up to 50m in height and 2.5m in diameter at 1.3m
(diameter at breast height: DBH). Its crowns are symmetrical
and circular in conical shape when young, but as an adult, they
present a concave crown with an average of 4-m-long
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Fig. 2 Study location and the four sampling areas. On the left is the
geographical location of the project area in the Imbituvao sub-basin. On
the right are the four rural properties (Al, A2, A3, and A4), with the

branches, reaching up to 9m. Its pine needles are dark green,
simple, alternating, spiral, and with a tip ending in a thorn,
reaching 6cm in length and lcm in width (Ruiz 2017). This
species is also found in isolated forests and fields, presenting
easy cognitive identification in very high-resolution sensor
images (i.c., RPAs).

H. dulcis is a deciduous tree species originally from
Southeast Asia (China, Japan, and Korea). It is a species
which can reach up to 25 m in height in Brazil, with trunks
up to 50cm of DBH and crowns up to 8m in diameter (Liu
et al. 2015). It presents reproductive phases and very peculiar
phenology, with light green leaves at the time of regrowth
compared to native species, most of which are evergreen with
dark green leaves. This facilitates its cognitive recognition in
high-resolution images.

2.2 WorldView-2 satellite

WorldView-2 is a new generation of imaging satellites. It is a
commercial satellite with passive sensors owned by
DigitalGlobe®. It has a heliosynchronous orbit and is approx-
imately 770km above sea level. It has eight spectral bands: (1)
coastal blue (CB: 400450 nm), (2) blue (B: 450-510 nm), (3)
green (G: 510-580 nm), (4) yellow (Y: 585-625 nm), (5) red
(R: 630-690 nm), (6) red edge (RE: 705-745 nm), (7) near-
infrared 1 (NIR-1: 770-895 nm), (8) near-infrared 2 (NIR-2:
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spatial location of the sample units (crowns of A. angustifolia and
H. dulcis). The image is WV2-2016, true color composition (R=660
nm, G=545 nm, B=480 nm)

860—1040 nm), with a spatial resolution of 1.84m. It also has a
panchromatic band of 0.46m of spatial resolution with a de-
tection interval of 450—800nm. This satellite image has a
scene size (coverage of a captured image) of 16.4km?, with
a radiometric resolution of 11 bits per pixel. Its temporal res-
olution is 3.7 days for maximum spatial resolution and 1.1
days with its spatial resolution halved. This off-nadir move-
ment also enables the satellite to produce stereoscopy in the
image (DigitalGlobe 2010). The WorldView-2 mission was
launched in 2009 and is currently operational.

2.3 Image acquisition and pre-processing

We acquired a WorldView-2 image captured on 04/30/2016 at
1:42 PM (WV2-2016) with less than 3% of cloud coverage;
the image covered about 85% of the Imbituvao River sub-
basin. The image was orthorectified (WGS 84, UTM — 22S)
with a digital elevation model (DEM) on a scale equivalent to
the spatial resolution of the image. Afterward, it was submit-
ted to atmospheric correction, and its radiance values were
converted to reflectance by the Fast Line-of-sight
Atmospheric Analysis of Spectral Hypercubes (FLAASH) al-
gorithm (Perkins 2012). After the atmospheric correction,
multispectral images were fused into a panchromatic image
by the principal components spectral sharpening (PC spectral
sharpening) algorithm Welch and Ehlers (1987), with
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resampling based on the nearest neighbor to achieve a spatial
resolution of 0.5m. Sample collection, attribute selection, fea-
ture extraction, data mining, and classification were then per-
formed after the image acquisition and pre-processing.

2.4 Sample collection and spectral attributes

A commonly used correlation analysis between bands was
performed before choosing the area and collecting the sam-
ples. Band correlation is expressed by the reflectance of each
pixel in each band, and the dimensions of the resulting images
are nb by nb, where nb is the number of bands of the input
data, in this case, nb = 8. This analysis indicates the similarity
between bands; however, the composition choice varies ac-
cording to the image application (Inglada 2002). For this
work, low similarity values were required to add more infor-
mation in the composition. The most dissimilar composition
for detecting the H. dulcis and A. angustifolia species was NIR
(NIR-2=950 nm, G=545 nm, B=480 nm). After choosing the
composition, the image was converted from 11 bits to 8 bits to
reduce dimensionality, and this conversion was done by inter-
polation. The chosen composition was compared to the true
RBG color composition (R=660 nm, G=545 nm, B=480 nm),
as shown in Fig. 3A. From this point on, we will use the term
NIR for composition with the red band’s replacement by near-
infrared and RGB for the composition with natural colors.
An area of 20 x 20 pixels was used to crop the treetops in
the images (sampling). This dimension was defined as seeking
to cover as much crown area as possible for both species,
avoiding pixels that do not correspond to the crowns, or bor-
der pixels (such as the edges of the tree itself). Researchers
with a similar aim as in the present study sought to detect the
invasive Solanum mauritianum species in South Africa

(A)

7NIR-1  8NIR-2

Convert 11 to 8 bits

Best composition:
8NIR-2, 3G and 2B

Natural color composition /
Control 5R,3G, and 2B

Fig. 3 Spectral-band correlation, radiometric conversion, and sample
collection by clipping the images of the crowns of A. angustifolia and
H. dulcis. A Correlation between the 8 spectral bands of the WorldView-
2 sensor; composition choice: near-infrared (NIR-2=950 nm, G=545 nm,

(native species of the Brazilian Atlantic forest) also in
WorldView-2 images using RF as a classifier (Peerbhay
et al. 2016). They obtained optimal clipping dimensions be-
tween 15 and 17m?, an average of 16 x 16 pixels for the fused
image. Thus, the choice of an average value of 20 x 20px for
larger species such as H. dulcis and A. angustifolia is justified.

This collection was performed in such a way that the sam-
pled individuals presented the same crown shape pattern and a
homogeneous distribution along with the image, avoiding
overlapping of crowns, trees in edges, or isolated conditions
(Fig. 1). Furthermore, the detailed choice of representative
individuals (healthy trees with similar crown sizes and shapes)
was performed as a collection criterion. A total of 45 clippings
were made for each species (A. angustifolia and H. dulcis) and
each RGB and NIR composition, (i.e., 90 clippings for each
composition) (Crisigiovanni et al. 2021). The entire clipping
procedure was manually performed using GIMP 2.8.22 soft-
ware, with simultaneous image validation of an RPA with a
spatial resolution of 0.06m (eBee - Sensefly®). The RPA
images do not correspond to the same year and month as the
satellite image, as they were captured in August 2018 when
H. dulcis has a very distinct leaf color (Fig. 3B).

The 90 clippings of the two species were divided into 2/3
(60 samples) to build the classification models (MOD). We
applied cross-validation k-folds 10/90 (CV) in this set. We
then separated 1/3 (30 samples) without training, for external
validation (EV) of the models. Next, we performed the cutout
collection and the division to construct each model in a bal-
anced way to avoid problems with imbalance (More and Rana
2017). The choice of cutouts for the model construction and
validation was made randomly and for both RGB and NIR
compositions. Each clipping contained 400 pixels, and each
pixel could receive 256 digital numbers (DN) from each band.

(B)
Hovenia
dulcis

B=480 nm) and true color composition (R=660 nm, G=545 nm, B=480
nm); and radiometric conversion. B Collection of samples by clipping the
crowns of A. angustifolia and H. dulcis in 20 x 20px, in both composi-
tions, in simultaneous confirmation with the RPA’s images
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We had three bands per composition or three spectral attri-
butes per image. The organization and distribution of each
pixel’s digital values and each band is where the spectral
and textural features can be selected. The reflectance histo-
grams for each image were extracted by Chemostat software®
(Helfer et al. 2015).

2.5 Textural attributes
2.5.1 Pyramid histogram of oriented gradients

Pyramid is a technique used to reduce the dimensionality of
raster-type images, which means that the pixel dimension is
halved for each step of the pyramid (for example 20x20px;
10x10px; 5%5px). Thus, a weighted average is performed
among the closest neighbors to achieve this, transforming ev-
ery four pixels of the image into one pixel (Fig. 4A). The
histogram of oriented gradients (HOG) technique is applied
after reducing the image dimensionality, which is a widely
used resource descriptor in computer vision and image pro-
cessing for object detection purposes (Korom et al. 2014).
The HOG method consists of overlapping windows of de-
fined dimensions to scan the image both horizontally and ver-
tically. This filter passage encodes information about the ori-
entation of the intensity gradients in the whole clipped image.
This coding is performed by vectors oriented in a direction
ranging from 0 to 360° (0°, 45°, 90°, 135° ..., 360°) and
intensity based on the digital values of each pixel (Fig. 4A).
HOG is a similar method for edge-oriented histograms (or
Edge Filters), although it uses local contrast normalization
for greater accuracy. HOG has been applied in different
knowledge areas since its discovery, including detecting forest
species by satellite imagery (Dalal and Triggs 2005; Rybski
et al. 2010; Hu and Collornosse 2013; Torrione et al. 2014;
Jipeng et al. 2020). For this work, PHOG and Edge Filter
(items 2.5.1 and 2.5.2) were applied to all samples (cutouts)

Fig. 4 Process of obtaining
textural attributes by PHOG and
Edge Filter descriptors. A PHOG,

(A)

of both compositions (NIR and RBG), and for both
A. angustifolia and H. dulcis species.

2.5.2 Edge Filter

Edges can be defined as points in a digital image where the
brightness of the image changes sharply with discontinuities.
These pixels, in which the reflectance of the image changes
drastically, are usually arranged in a set of segments of lines or
curves. Edge detection includes a variety of mathematical
methods which aim to identify these discontinuities caused
by brightness changes. Like HOG, this method also consists
of overlapping windows of defined dimensions and scanning
the entire image vertically and horizontally. This imaging scan
identifies edges and organizes them according to their distri-
bution and location (Fig. 4B). This technique has been widely
used in computer vision for detecting objects in an unsuper-
vised manner (Basa 2015), or in segmenting images, mainly
from satellites, for object-oriented classification (Kang et al.
2013). Both textural descriptors (HOG and Edge Filter) were
executed by the ImageFilter package implemented in Weka
3.9.3 (Waikato Environment for Knowledge Analysis) (Frank
et al. 2016).

2.6 Data mining (genetic algorithm)

A data mining technique was used before performing the clas-
sification to select the best features, using spectral data (reflec-
tance histograms) and textural data-oriented histograms ex-
tracted by PHOG (the data extracted by Edge Filter did not
go through the mining process because the number of ele-
ments extracted by this descriptor was low). The genetic algo-
rithm (GA) was used for this mining, which is a metaheuristic
algorithm bioinspired by the adaptive process of natural selec-
tion, and thus uses operators such as crossover and mutation to
select the best features in a data set (Huang and Wang 2006).

NIR -2
B
G

NIR -2

(B)

NIR -2
B

R

G F R
R 29|27 33 | 23

29 | 27 | 33 ‘ 23

reduction of the dimensionality of
the crown’s clipped followed by
the application of the histogram of
oriented gradients, by scanning

156 | 160 30‘28 . | 156 |160 | 30
——— Edge filter

E> ' 158 | 160 | 32

165 |157 | 160
!

N
o

*
*
4 158 160 32 | 17
% 157 160

N
«f.
“

-
~

* ¥ B

the image by windows. B
Application of Edge Filter for
detection of discontinuities in
pixel values. Both images of

A. angustifolia in A and B come
from WV2-2016, true color
composition (R=660 nm, G=545
nm, B=480 nm)

(pixels) ﬁ

Pyramid

A. angustifolia

2 s INRA

. 165 157‘160’ 31
< .
<

E

LS
\
\

'
'
'
'
1
'
|

o e I

.

A. angustifolia Edges



Annals of Forest Science (2021) 78: 54

Page70f16 54

GA belongs to the larger class of evolutionary algorithms
(EA) and is commonly used to generate high-quality solutions
to optimization problems in operational surveys, but has been
widely applied to detect objects in remote sensor images
(Bhanu et al. 1995; Celik 2010; Hashemi et al. 2010; Xu
et al. 2020).

The GA was adjusted for our goal of selecting better spec-
tral and textural features of the images to the following
hyperparameters: 60% probability of crossover and 3.3% of
mutation. The crossings occurred with a maximum population
of 20 individuals with a selection time of 20 generations. This
algorithm was applied to the 60 separate individuals for con-
structing classification models. Figure 5 details the input of
the attributes of the clippings of each image to be selected by
the GA algorithm.

2.7 Classification algorithms: ANN and RF

Next, two classification algorithms were applied after choos-
ing the best features for both compositions by GA for both
spectral and textural features: (1) ANN; and (2) RF. Both
classification algorithms were performed with cross-
validation by the K-folds 10/90 method. The classification
was also evaluated by the Feasure, Which uses the agreement
of the data set classifications. Machine learning algorithms
were run using Weka 3.9.3 software (Frank et al. 2016).

2.7.1 Artificial neural network

The ANN algorithm is a bioinspired algorithm based on the
functioning of human neuron layers (Tang et al. 2016). We

Individual/Chromossome

used a multilayer perceptron (MLP) architecture, which con-
stituted the algorithm of a layer of input neurons and a hidden
output layer. The impulses received by the neural receptors
represent the data entry in the algorithm, which in this case
were spectral and textural attributes. The ANN classification
process is performed by iterations called epochs; between
each epoch, there may be adjustments in the weights assigned
to the input data, modifying the paths made between neurons
of the network for classification. These adjustments represent
the learning rate of the algorithm, which for this case used a
learning rate of 0.3, with a variation of training time epochs
from 0 to 500 (Ramchoun et al. 2016).

2.7.2 Random forest

RF is also a bioinspired algorithm, although based on decision
trees. This algorithm builds a new database based on the orig-
inal one by classifying the two databases into original and
artificial. The algorithm then performs a sequence of decision
trees, and instead of searching for the most important resource
when splitting a node, it looks for the best resource among a
random subset of resources (Breiman 2001). For this case, the
hyperparameters were 100 decision trees to be analyzed in
100 search iterations (Guan et al. 2013).

2.8 Accuracy analysis

Percentages of global correct answers were used for both spe-
cies concerning the total number of cutouts classified by the
model to verify the ANN and RF algorithms’ classification
capability. We also used the Precision (Eq. 1), Recall (Eq.

Gene
Sgectral— .
I Genetic
PHOG — I algorithm
Population
. . =
A. angustifolia — sort
Spectral T
PHOG Crossover
: | Data
B Mutation mining
Spectral
e o
. EHOG Converge?
Population 3
H. dulcis n YES |
Spectral Best II
I T AT ! e - o ! o o ot ' — features
[ T a7 L&Al 1 a7 || LAl IALH PHOG
‘ REBLRIPRERREEREXAEE =

Fig. 5 Scheme of the mining process of spectral attributes and PHOG by genetic algorithm—GA. Scheme of spectral and texture attributes (PHOG) for
each RGB and NIR composition, and for each species A. angustifolia and H. dulcis, to be selected by GA algorithm
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2), and F casure (Eq. 3) to access the omission and commission
errors, which has been extensively used to analyze the accu-
racy of classifier algorithms (Hand and Christen 2018). Its
equations are given by:

P P

Precison = TP + FN N gpecies v
P
Recall = ———— 2
TPy EP ’
Precision + Recall
Feasure = 2 (3)

In which TP is the total number of each correctly classified
species (A. angustifolia or H. dulcis); FN is the false-negative
detections, indicating the number of A. angustifolia or
H. dulcis which are not correctly classified (i.e., omission
errors); and FP is the false-positive detections, indicating the
number A. angusitfolia classified as H. dulcis and vice versa
(i.e., commission errors). F casure cOrresponds to the mean of
Precision and Recall (in this case, we can use a simple mean
because the data is balanced).

3 Results
3.1 Spectral and textural feature selection

The extraction of spectral features was performed by the re-
flectance histogram of the image clippings. Figure 6 shows
that the reflection patterns for each of the RGB and NIR bands
are very distinct between H. dulcis (B) and A. angustifolia (A).
It can be observed that the shade of green reflected by
A. angustifolia is darker than H. dulcis. Regarding the radio-
metric resolution, we can observe that A. angustifolia’s reflec-
tance interval is about 50 shades of gray darker than H. dulcis.
The greater dispersion of the values reflected in the infrared
range to H. dulcis is also remarkable.

Feature extraction by textural descriptors was also per-
formed based on the reflectance values in Fig. 6. However,
textural descriptors take into account the position of each pixel
to find discontinuities or sudden changes in reflection patterns.
The features selected by PHOG are based on the image size
and the number of pyramids performed to reduce the image’s
dimensionality. Thus, the number of features selected for the
different compositions and different species was 680 in total,
approximately 225 features per spectral band. The results were
different for the Edge Filter, since different numbers of fea-
tures per species are extracted. The compositions of the RGB
and NIR images provided 80 features selected for the Edge
Filter, approximately 25 features per spectral band.

The genetic search algorithm using the hyperparameters
proposed in the literature was able to reduce the amount of
input data for the classifier algorithms by about 60%. We
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Fig. 6 Reflectance distribution histograms of the selected bands for each
species A. angustifolia and H. dulcis. A Histogram of distribution of
reflectance values for the four bands selected in the work for
A. angustifolia. B Histogram for H. dulcis. Reflectance percentage
values range from 0 to 100% and gray levels in 8 bits from 0 (white) to
255 (black). The axes were limited to the maximum values for easy
visualization

obtained optimization rates of up to 10% using GA compared
to when not using GA for RF and ANN classifiers. This re-
duction can be observed for both reflectance histograms and
for the features selected by the textural descriptor PHOG.

3.2 ANN and RF classifiers

Both ANN and RF classifiers showed high performance, with
high and similar classification rates, as can be seen in Fig. 7A.
However, RF showed greater accuracy for both spectral and
textural attributes. An average increase of 2.5% was observed,
corresponding to two additional images correctly classified by
RF in cross-validation (CV). The addition of correct classifi-
cations for external validation (EV) was 6.4% using RF as a
classifier. The increase was only 0.3% when all features (all
images) (MOD) were used, in other words practically null
(Table 1).

When comparing the two compositions (RGB and NIR)
considering both spectral and textural descriptors, we can ob-
serve that there was a better classification for the NIR compo-
sition of the images compared to RGB images (Fig. 7B). In
analyzing ANN, there was an increase of 11.6% using CV,
2.3% using EV, and 11.1% when using MOD. Regarding RF,
there was even greater contrast between the compositions,
with an increase of 12.2% for the CV, 8.9% for the EV, and
10.6% for the MOD (Table 1).

In focusing on the correct percentage of images classified
by species by both algorithms, we can observe that there were
no major difficulties for either ANN or RF in classifying spe-
cies for spectral descriptors (Fig. 8). There was a higher clas-
sification rate of H. dulcis for RGB images with a difference
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0f 2.3% in the CV compared to A. angustifolia. This increase
was maintained, although subtly, showing an increase 0f 0.8%
for the MOD. In contrast, A. angustifolia stood out for the EV
with an increase of 6.7% accurate classification for the
H. dulcis species (Table 1).

However, this scenario was completely different regarding
texture descriptors (PHOG and Edge Filter). In this case, all
the results for A. angustifolia outweighed the classification
values, demonstrating that the texture descriptors for recog-
nizing H. dulcis were not as efficient as for A. angustifolia
(Fig. 8). The decrease in H. dulcis classification rates com-
pared to A. angustifolia was 25.4% lower for CV (equivalent
for this case, 7 individuals classified incorrectly), 20% lower
for EV (6 individuals), and 15.8% lower for MOD (4 individ-
uals), respectively (Table 1).

We can observe that the differences in classifications be-
tween species show greater contrast when we classify the im-
ages by the PHOG and Edge Filter texture descriptors (Fig. 9
and Table 1). The classification of H. dulcis for texture was
low, mainly due to PHOG features. On the other hand, the
scenario reverses for A. angustifolia, with subtle variations in
the classification. The PHOG descriptors for A. angustifolia
proved to be better when classified by RF and ANN. Cross-
validation (CV) was over 99%, well above the CV for
H. dulcis.

Since the classification of H. dulcis using PHOG did not
obtain high rates, we can better analyze the results for this
species by comparing the differences in the accuracy of
PHOG for RGB composition (Table 1). CV—Precision:
23.3%, Recall: 100.0%, and Fcasure: 61.7%; EV—
Precision: 13.3%, Recall: 66.7%, and Fc.sure: 40.0%;
MOD—Precision: 36.7%, Recall: 100.0%, and F,,casure:
68.3% (these values were the same for both RF and ANN).
Note that the main error is associated with the omission of
H. dulcis (images not classified correctly), which did not
markedly occur in the commissions (insertion of
A. angustifolia in H. dulcis’ class). This result indicates that
there was a greater difficulty in classifying H. dulcis linked to
the features extracted by PHOG for RGB composition.

The computational time spent on constructing and training
the models was also analyzed. The computational effort spent
to run the RF algorithm was about 10 times lower than for the
ANN algorithm (data not shown). The network system stabi-
lizes after 500 epochs for both RGB and NIR compositions
when analyzing the recognition rate by the ANN classifier
with the number of epochs that the algorithm processes. The
neural network learning was plotted by its percentage of clas-
sification (cross-validation) as a function of epochs (Fig. 10A
and 10B). Another factor which can be emphasized is the need
for a larger number of epochs for the curve to achieve an
asymptotic behavior when textural attributes are used when
compared to spectral attributes by the RGB channels. We can
observe that the neural network was already trained at 100

epoch, without a loss in the classification quality and with
much lower computational cost compared to when using
500 epochs. It can also be noted that the inflection points of
the curves, meaning the moments where there is the highest
classification with the shortest possible time (obtained by the
first derivative of the function), happen in the first 10
iterations.

4 Discussion

4.1 MOF species composition and its detections by
remote sensors

MOF is one of the most diverse phytophysiognomies in the
Atlantic Rainforest. In addition to having a diversified horizontal
composition, it also has high spatial variability and a very strat-
ified vertical structure (Pelissari et al. 2018). About 106 tree
species, 75 genera, and 39 botanical families were identified in
forest inventories carried out in the region of the present work
(Imbituvao sub-basin). The vast majority of these species are
evergreen angiosperms with great variability in leaf structure.
The Myrtaceae family deserves mention, having crowns mostly
in the codominant stratum of the forest. Lauraceae and Fabaceae
families are part of the species, which make up the upper or
dominant strata, as well as the Sapindaceae, Asteraceae, and
Araucariaceae (represented by A. angustifolia) families. These
families comprise 62.6% of all individuals sampled Figueiredo
etal. (2013). Similar patterns were found in other studies carried
out in the MOF in southern Brazil (Ferreira et al. 2016b; de
Oliveira et al. 2018; Pelissari et al. 2018).

The diversity of forest spectral responses is also high due to
the high diversity of species, spatial variability and stratification
of MOF, and subtropical forest characteristics, increasing the
difficulty in classifying canopies by remote sensors. It was pos-
sible to identify 12 species with classic machine learning tech-
niques (support vector machine—SVM) in studies using
hyperspectral RPAs and point clouds (Sothe et al. 2019), and
up to 15 species using deep learning techniques such as
convolutional neural network (CNN) (Sothe et al. 2020). In
addition, using hyperspectral RPA sensors with RF as a classi-
fier in the seasonal semi-deciduous forest (phytophysiognomy
belonging to the Atlantic Rainforest, but with less diversity and
without the presence of A. angustifolia) managed to classify 8
species (Miyoshi et al. 2020). However, these classification
values do not reach 15% of the species found in a conventional
forest inventory in Atlantic forests.

4.2 WorldView-2 for tree species detection
The WordView-2 multispectral satellite is widely used for tree

crown detection (Immitzer et al. 2012; Korom et al. 2014;
Peerbhay et al. 2016). However, it still has wide bands in the
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Table 1 Classifiers accuracy indexes for each composition and descriptor

a b Precision Recall Fineasure Overall accuracy
Spectral attributes

ANN-RGB

(6\% a=A. angustifolia 27 3 90.0% 96.4% 93.2% Global accuracy 93.30%
b=H. dulcis 1 29 96.7% 90.6% 93.6% Global error 6.70%

EV a=A. angustifolia 14 1 93.3% 100.0% 96.7% Global accuracy 96.70%
b=H. dulcis 0 15 100.0% 93.8% 96.9% Global error 3.30%

MOD a=A. angustifolia 29 1 96.7% 100.0% 98.3% Global accuracy 98.30%
b=H. dulcis 0 30 100.0% 96.8% 98.4% Global error 1.70%

RF-RBG

(0% a=A. angustifolia 28 2 93.3% 96.6% 94.9% Global accuracy 95.00%
b=H. dulcis 1 29 96.7% 93.5% 95.1% Global error 5.00%

EV a=A. angustifolia 15 0 100.0% 100.0% 100.0% Global accuracy 100.00%
b=H. dulcis 0 15 100.0% 100.0% 100.0% Global error 0.00%

MOD a=A. angustifolia 30 0 100.0% 100.0% 100.0% Global accuracy 100.00%
b=H. dulcis 0 30 100.0% 100.0% 100.0% Global error 0.00%

ANN-NIR

(6\% a=A. angustifolia 28 2 93.3% 93.3% 93.3% Global accuracy 93.30%
b=H. dulcis 2 28 93.3% 93.3% 93.3% Global error 6.70%

EV a=A. angustifolia 14 1 93.3% 82.4% 87.8% Global accuracy 86.70%
b=H. dulcis 3 12 80.0% 92.3% 86.2% Global error 13.30%

MOD a=A. angustifolia 30 0 100.0% 100.0% 100.0% Global accuracy 100.00%
b=H. dulcis 0 30 100.0% 100.0% 100.0% Global error 0.00%

RF-NIR

(0% a=A. angustifolia 28 2 93.3% 96.6% 94.9% Global accuracy 95.00%
b=H. dulcis 1 29 96.7% 93.5% 95.1% Global error 5.00%

EV a=A. angustifolia 15 0 100.0% 83.3% 91.7% Global accuracy 90.00%
b=H. dulcis 3 12 80.0% 100.0% 90.0% Global error 10.00%

MOD a=A. angustifolia 30 0 100.0% 100.0% 100.0% Global accuracy 100.00%
b=H. dulcis 0 30 100.0% 100.0% 100.0% Global error 0.00%

Textural attributes

ANN-RBG PHOG

CV a=A. angustifolia 30 0 100.0% 56.6% 78.3% Global accuracy 61.70%
b=H. dulcis 23 7 23.3% 100.0% 61.7% Global error 38.30%

EV a=A. angustifolia 14 1 93.3% 51.9% 72.6% Global accuracy 53.30%
b=H. dulcis 13 2 13.3% 66.7% 40.0% Global error 46.60%

MOD a=A. angustifolia 30 0 100.0% 61.2% 80.6% Global accuracy 68.30%
b=H. dulcis 19 11 36.7% 100.0% 68.3% Global error 31.70%

RF-RBG PHOG

CV a=A. angustifolia 30 0 100.0% 56.6% 78.3% Global accuracy 61.70%
b=H. dulcis 23 7 23.3% 100.0% 61.7% Global error 38.30%

EV a=A. angustifolia 14 1 93.3% 51.9% 72.6% Global accuracy 53.30%
b=H. dulcis 13 2 13.3% 66.7% 40.0% Global error 46.70%

MOD a=A. angustifolia 30 0 100.0% 61.2% 80.6% Global accuracy 68.30%
b=H. dulcis 19 11 36.7% 100.0% 68.3% Global error 31.70%

ANN-NIR PHOG

()% a=A. angustifolia 30 0 100.0% 85.7% 92.9% Global accuracy 91.70%
b=H. dulcis 5 25 83.3% 100.0% 91.7% Global error 8.30%

EV a=A. angustifolia 14 1 93.3% 70.0% 81.7% Global accuracy 76.70%
b=H. dulcis 6 9 60.0% 90.0% 75.0% Global error 23.30%
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Table 1 (continued)

a b Precision Recall Fineasure Overall accuracy
MOD a=A. angustifolia 30 0 100.0% 100.0% 100.0% Global accuracy 100.00%
b=H. dulcis 0 30 100.0% 100.0% 100.0% Global error 0.00%
RF-NIR PHOG
Ccv a=A. angustifolia 29 1 96.7% 93.5% 95.1% Global accuracy 95.00%
b=H. dulcis 2 28 93.3% 96.6% 94.9% Global error 5.00%
EV a=A. angustifolia 14 1 93.3% 87.5% 90.4% Global accuracy 90.00%
b=H. dulcis 2 13 86.7% 92.9% 89.8% Global error 10.00%
MOD a=A. angustifolia 30 0 100.0% 100.0% 100.0% Global accuracy 100.00%
b=H. dulcis 0 30 100.0% 100.0% 100.0% Global error 0.00%
ANN-RBG Edge
CV a=A. angustifolia 24 6 80.0% 72.7% 76.4% Global accuracy 75.00%
b=H. dulcis 9 21 70.0% 77.8% 73.9% Global error 25.00%
EV a=A. angustifolia 12 3 80.0% 75.0% 77.5% Global accuracy 76.70%
b=H. dulcis 4 11 73.3% 78.6% 76.0% Global error 23.30%
MOD a=A. angustifolia 30 0 100.0% 100.0% 100.0% Global accuracy 100.00%
b=H. dulcis 0 30 100.0% 100.0% 100.0% Global error 0.00%
RF-RBG Edge
(6)% a=A. angustifolia 24 6 80.0% 80.0% 80.0% Global accuracy 80.00%
b=H. dulcis 6 24 80.0% 80.0% 80.0% Global error 20.00%
EV a=A. angustifolia 14 1 93.3% 77.8% 85.6% Global accuracy 83.30%
b=H. dulcis 4 11 73.3% 91.7% 82.5% Global error 16.70%
MOD a=A. angustifolia 30 0 100.0% 100.0% 100.0% Global accuracy 100.00%
b=H. dulcis 0 30 100.0% 100.0% 100.0% Global error 0.00%
ANN-NIR Edge
CvV a=A. angustifolia 27 3 90.0% 75.0% 82.5% Global accuracy 80.00%
b=H. dulcis 9 21 70.0% 87.5% 78.8% Global error 20.00%
EV a=A. angustifolia 10 5 66.7% 71.4% 69.0% Global accuracy 70.00%
b=H. dulcis 4 11 73.3% 68.8% 71.0% Global error 30.00%
MOD a=A. angustifolia 30 0 100.0% 100.0% 100.0% Global accuracy 100.00%
b=H. dulcis 0 30 100.0% 100.0% 100.0% Global error 0.00%
RF-NIR Edge
Ccv a=A. angustifolia 25 5 83.3% 83.3% 83.3% Global accuracy 83.30%
b=H. dulcis 5 25 83.3% 83.3% 83.3% Global error 16.70%
EV a=A. angustifolia 13 2 86.7% 81.3% 84.0% Global accuracy 83.30%
b=H. dulcis 3 12 80.0% 85.7% 82.9% Global error 16.70%
MOD a=A. angustifolia 30 0 100.0% 100.0% 100.0% Global accuracy 100.00%
b=H. dulcis 0 30 100.0% 100.0% 100.0% Global error 0.00%

Legend: CV, cross-validation; £V, external validation; and MOD using the supplied test set (all features)

detection spectrum, mainly in the infrared, compared with
hyperspectral sensors. This makes it difficult to detect species
in a highly diverse ecosystem such as MOF. This factor is due
to the overlap of spectral signatures between species not being
included in the spectrum bands captured by the sensor. This
scenario changes in classifications of European forests. For
example, an identification potential of 20 species was
achieved in research using RF with WordView-2 images in
eastern Austria (Immitzer et al. 2012).

The latest mission of the Worldviews series (WorldView-
3) features one of the most advanced very high-resolution
(VHR) sensors, providing spectral data in 16 bands and cov-
ering from visible to near-infrared (VNIR, 400—1040 nm) and
shortwave-infrared (SWIR, 1210-2365 nm). The aggregation
of these spectral bands facilitates recognition of forest species
environments with high diversity. Ferreira et al. (2016a) man-
aged with the association of WV-3 images and textural attri-
butes to identify 8 species in the semi-deciduous forest. The

INRAD & sorne
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Fig. 7 Classifications percentage by ANN and RF algorithm without
distinction of spectral and textural attributes. A Average classifications
by ANN and RF (regardless of composition). B Average classifications
by ANN and RF, taking into account the composition RGB and NIR.
CV—cross-validation; EV—external validation; and MOD—
classification using all features

same was found with WV-3 images associated with
hyperspectral data (Ferreira et al. 2019).

4.3 Morphological and phenological species
characteristics

H. dulcis has very obvious, delimited phenology and repro-
ductive cycles. This species blooms from August to February
in southern Brazil, and has ripe fruits from March to October.
There is also a total leaf loss season that runs from April/May
to August, and regrowth begins at the end of August
(Carvalho 1994). These phenological characteristics can be
easily cognitively observed in high-resolution satellite images,
except from February to April when the foliage presents a
shade of green similar to other MOF leaf-species. The
A. angustifolia species does not present changes during the
year, but its detection in images is also possible because it is
one of the tallest species of the Atlantic Rainforest and due to
the characteristics of the pine needle.

These phenological differences between the two species
were taken into account for comparison by spectral and tex-
tural descriptors. It was expected a priori that the spectral
attributes would not be so significant due to the day the images

Fig. 8 Classifications percentage 8.
by species and descriptors -
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of classifier (RF and ANN). s
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external validation; and MOD— 8
classification using all features 1R
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©
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were captured (04/30/2016), which is the beginning of the
flowering of H. dulcis, a stage in which the species still pre-
sents a shade of green similar to other leafy species. These
phenological responses proved to be more efficient for
distinguishing species, mainly related to the classification of
H. dulcis. This result indicates that even in times when
H. dulcis does not visually stand out, the species presents a
high contrast between the reflection rates of A. angustifolia.
This differentiation was even more visible when the attributes
were analyzed by the composition with the infrared band
(NIR-2).

The importance of the infrared component for vegetation
studies is well known; however, near-infrared regions (500—
900 nm) were considered essential for differentiating species
in Atlantic Rainforests (Ferreira et al. 2019; Miyoshi et al.
2020). On the other hand, the textural descriptors demonstrate
a higher efficiency (for both classifiers) in detecting
A. angustifolia, constituting a result which is in favor of what
was expected a priori. These results are possible mainly due to
the singular shape of their crowns, which present numerous
discontinuities of edges because of changes in shading formed
by the shape of the branches (Sothe et al. 2020).

4.4 ANN and RF classifier performance

In summary, we found high rates of correct classifications for
both species by the RF and ANN classification algorithms.
Moreover, we observed that there was a low computational
processing cost to run the algorithms. However, the highest
recognition values were achieved by the RF classifier over
ANN, which in addition to obtaining lower classification
rates, required a higher computational cost for network train-
ing. Some studies point to greater stability and predictive pow-
er of ANN compared to RF when adjusting regression models
for optimization purposes (Ahmad et al. 2017). Nonetheless,
several studies have indicated that the RF classifier achieves
better classification results when applied to data from multi-
spectral satellite images, and in addition requires configura-
tions with fewer hyperparameters for the adjustment of its
models (Chan et al. 2012; Shao et al. 2015).

Some characteristics aiding efficient application of RF with
multispectral images for classifications of different tree

A. angustifolia- Spectral
A. angustifolia- Textural
H. dulcis- Spectral
H. dulcis- Textural

Specie/Feature
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species could be shown in this work. The increase in the cor-
rect classification rates for both species when the NIR com-
position was used was evident. This fact indicates the impor-
tance of gaining spectral information when using quality data
from sensors such as WorldView-2 (Ferreira et al. 2016a,
2019).

Another characteristic of RF is its greater stability
regarding the number and size of samples used for
training when compared to other classifiers. This is
due to the large number of decision trees produced by
randomly selecting a subset of training samples and a
subset of variables to split each node in the tree.
Comparisons published using RF and other group clas-
sifiers such as AdaBoost reported that both classifiers
produced similar classification results, although the RF
algorithm showed greater speed to train the data and
greater stability in the classification (Chan and
Paclinckx 2008; Miao et al. 2012).
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5 Conclusion

This study demonstrated that the WorldView-2 multispectral
sensor has the potential to provide sufficient information for
recognizing the H. dulcis and A. angustifolia species in the
MOF. The RF and ANN machine learning algorithms were
effective in classifying these species, reaching close to 95%
accuracy. This result could be achieved due to the sample
design choice with scale factors for sample collection and
the use of spectral and textural descriptors (PHOG and Edge
Filter). Spectral attributes, mainly related to the infrared band
(NIR-2), were more efficient for classification compared to
textural attributes. Furthermore, H. dulcis classification was
not satisfactory regarding texture, but the attributes extracted
by the Edge Filter were efficient in classifying A. angustifolia.
Furthermore, data mining by the genetic algorithm indicated
that selecting the best features reduced the data entry size and
increased the performance of the RF and ANN classifiers.
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Additional studies covering different types of vegetation in
different phytogeographic contexts and periods of the year
(spatiotemporal) are needed to confirm the potential of
WorldView-2 data for classifying these species. We suggest
using all the radiometric resolution of the images (11bits)
which was converted in this work to reduce the data dimen-
sionality. We also suggest using deep learning algorithms
(i.e., CNN) to automate the extraction of spectral, textural,
and spatial attributes. Therefore, other MOF species should
also be evaluated to increase the diversity of spectral re-
sponses and improve remote forest inventories.

We can conclude that the sample design, the use of
WorldView-2 sensor images, the choice of descriptors, and
GA, RF, and ANN algorithms were efficient for classifying
the species addressed herein. This work contributes to im-
provements in the recognition and identification methods of
tree species by high-resolution image and machine learning. It
consequently provides information which contributes to the
conservation and management of the MOF, considering that
A. angustifolia is the characteristic and dominant species of
this forest typology, as opposed to H. dulcis which is a wor-
rying and aggressive invasive alien species.

Abbreviations MOF, Mixed Ombrophylous Forest; NCU, National
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Aircraft; ANN, Artificial neural network; MLP, Multilayer perceptron
(neural network architecture); RF, Random forest; PHOG, Pyramid his-
togram of oriented gradients; GA, Genetic algorithm; R, Red; G, Green;
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