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Abstract
Key message  Including individual-tree competition indices as predictor variables could significantly improve the 
performance of crown width and length models for Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.). Moreover, 
distance-dependent competition indices are superior to distance-independent ones when modeling crown width and 
length. Compared with crown width and length basic models with optimum competition indices, the performance of 
the two-level nonlinear mixed-effects models improved.
Context  Crown width (CW) and crown length (CL) are two important variables widely included as the predictors in growth 
and yield models that contribute to forest management strategies.
Aims  Individual-tree crown width and length models were developed with data from 1498 Chinese fir (Cunninghamia 
lanceolata (Lamb.) Hook.) trees in 16 sample plots located at Jiangle County, Fujian Province, southeastern China. Two 
hypotheses were proposed: (1) including individual-tree competition indices as predictor variables could significantly improve 
performance of both the CW—DBH and CL—DBH models; and (2) the distance-dependent competition indices would 
perform better than distance-independent ones.
Methods  The models were fitted using generalized linear least squares or generalized nonlinear least squares methods. In 
addition, to prevent correlations between observations from the same sampling unit, we introduced age classes and sample 
plots as random effects to develop the two-level nonlinear mixed-effects models.
Results  We found introduction of competition indices could significantly improve the performance of the CW—DBH and 
CL—DBH models. The distance-dependent competition index (i.e., competitor to subject tree distance) performed best in 
modeling the crown width and length models. Compared with crown width and length basic models with optimum competi-
tion indices, the performance of the two-level nonlinear mixed-effects models was significantly better.
Conclusion  The two hypotheses were accepted. We hope these models will contribute to scientific management of Chinese 
fir plantations.

Keywords  Crown width and length models · Individual-tree competition indices · Optimum competition indices · 
Heteroskedasticity · Two-level nonlinear mixed-effects model

1  Introduction

Forests are the largest territorial ecosystems on Earth and 
provide myriad ecosystem services (Buschbacher 1990; 
Meng et al. 2016b). Generally, ecosystem structure deter-
mines function (Warfield 2006), as is the case for forests 
(Meng et al. 2016a). Canopy structure plays a vital role in 
shaping forest ecosystems because it serves as a major layer 
for photosynthesis, respiration, and transpiration (Hernan-
dezmoreno et al. 2017; Wang and Jarvis 1990). Additionally, 
canopy structure plays a dominant role in regulating energy 
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flow processes, and hence has an important effect on tree 
growth, dynamics, and productivity (Geißler et al. 2013; 
Leiterer et al. 2015).

Individual-tree crowns are the basic unit of forest canopy 
structure (Mallinis et al. 2013). Tree crown is an explicit 
and direct indicator describing tree vigor and health (Zar-
noch et al. 2004), long-term competitiveness (Biging and 
Dobbertin 1992), productivity (Stenberg et al. 1994), and 
wood quality (De Kort et al. 1991). It is also extensively 
used to estimate individual-tree growth (Leites et al. 2009), 
individual-tree aboveground biomass (Carvalho and Par-
resol 2003), crown light interception (Pukkala et al. 1991), 
crown fire risk (Gómez-Vázquez et al. 2014), and stand 
regeneration (Crookston and Stage 1999). However, labor- 
and time-intensive measurement of tree crowns impairs its 
wide application to inform forest management. As such, a 
number of studies have focused on developing individual 
crown models (Sharma et al. 2016). Crown models have 
been widely integrated into individual-tree-based stand sim-
ulators, such as Forest Vegetation Simulator (FVS) (John-
son 1997), SILVA (Pretzsch et al. 2006), BWINPro (Nagel 
and Schmidt 2006), and FORest of RUSsia − Stand (FOR-
RUS − S) (Chumachenko et al. 2003), which have facilitated 
forest management decision making.

Crown width (CW) and crown length (CL) are two impor-
tant features of tree crown structure (Zeng 2015). These two 
features are often predicted using diameter at breast height 
(DBH) as the independent variable with linear or nonlin-
ear regression (Russell and Weiskittel 2011). The regres-
sion methods require the following assumptions (Ritz and 
Streibig 2008; Sheather 2009): (1) errors e1, e2, …, en are 
independent; (2) errors e1, e2, …, en have a common variance 
σ2; and (3) the errors are normally distributed with a mean of 
0 and variance σ2, that is, e|X ~ N(0, σ2). However, forestry 
data typically are spatially and temporally auto-correlated 
(Grégoire et al. 1995). The above assumptions could be vio-
lated due to the hierarchical and longitudinal structure of 
forestry data, resulting in biased estimation of standard error 
of parameters (Calama and Montero 2004; Fu et al. 2013). 
Because mixed-effects models provide a flexible and power-
ful tool for analysis of grouped data (e.g., longitudinal data, 
repeated measures data, blocked designs data, and multilevel 
data) (Zhao et al. 2013), many authors (Lindstrom and Bates 
1990; Vonesh and Chinchilli 1997) have employed it to pre-
dict tree crown variables and found that this approach out-
performed conventional regression methods (Fu et al. 2013; 
Sharma et al. 2016). For example, Sharma et al. (2016) and 
Sánchez-González et al. (2007) introduced sample plot as 
a random effect into basic CW—DBH functions. Fu et al. 
(2013) incorporated both site index class and sample plot as 
random effects into their basic CW—DBH function. Fu et al. 
(2017) added both block and sample plot as random effects 
into a basic height to crown base (HCB)—DBH function.

Differing from open-grown trees, the crown width and 
length for stand-grown trees is significantly influenced by 
competition among individual trees (Pacala et al. 1996; 
Sharma et al. 2016). Individual-tree competition indices 
(CIs), which can be classified into distance-dependent CIs 
and distance-independent CIs, have been being developed 
since the 1960s to quantify individual-tree-level competi-
tion (Schröder and Gadow 1999; Stadt et al. 2002). Unfortu-
nately, only a few studies on crown width and length models 
that include distance-dependent CIs (Davies and Pommeren-
ing 2008; Purves et al. 2007; Rüdiger 2003; Rouvinen and 
Kuuluvainen 1997; Thorpe et al. 2010), and fewer research-
ers compared the performance of distance-dependent CIs 
and distance-independent CIs in developing crown models 
(Sharma et al. 2016).

In the present study, we hypothesized that including CIs 
as predictor variables could significantly improve perfor-
mance of both CW—DBH and CL—DBH models. More-
over, since spatial arrangement of trees could have a sig-
nificant influence on their growth (Pukkala and Kolstroem 
1991), we proposed a second hypothesis that distance-
dependent CIs perform better than distance-independent 
CIs. The objectives of this present study were (1) to test 
the hypotheses by including both distance-dependent and 
distance-independent CIs for development of CW and CL 
models, (2) identify the optimum CIs for the models, and 
(3) produce mixed-effects predictive models for CW and CL 
using optimum CIs for a Chinese fir plantation.

2 � Materials and methods

2.1 � Study area

Our study area was located in Jiangle County (26° 26′ N 
to 27° 04′ N, 117° 05′ E to 117° 40′ E) in Fujian Province, 
southeastern China. It has a subtropical monsoon climate 
with characteristics of both an oceanic and continental cli-
mate. The annual average temperature is 18.7 °C, the annual 
average precipitation is 1698.2 mm, the annual average sun-
shine time is 1730 h, and the average frost-free period is 
295 days (Lin et al. 2018). The main soil type in the study 
area is red soil. Hills and low mountains are the main land-
forms, accounting for 90% of the region. The average ele-
vation is 540 m, with the highest peak 1620 m. The main 
vegetation types include natural secondary forest, Chinese 
fir plantations, and Masson pine (Pinus massoniana Lamb.) 
plantations (Chen et al. 2018).

2.2 � Data source

Data employed in this study were collected from 16 squared 
sample plots of 400 m2 in even-aged, pure Chinese fir 
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plantations. C. lanceolata accounted for 97.73% of total 
basal area in this plantation, with the other 2.27% repre-
sented by 15 tree species, e.g., Cinnamomum camphora (L.) 
Presl (0.73%), Vernicia montana Lour. (0.36%), and Magno-
lia officinalis Rehd. et Wils. (0.20%). These 16 sample plots 
were further grouped into the following categories based 
on age classes: 4 sample plots of young stands (6 years), 
4 sample plots of middle-aged stands (16 years), 4 sample 
plots of near mature stands (23 years), and 4 sample plots of 
mature stands (30 years).

For each standing live tree, DBH and relative coordi-
nates were measured with a precision of 0.1 cm and 0.01 m, 
respectively. Using a Vertex III altimeter (Vasilescu 2013), 
total tree heights (H) and height to crown base (HCB) were 
measured with a precision of 0.1 m. CW was calculated as the 
arithmetic mean of two crown widths, derived from the four 
measured crown radii at two azimuths. The first azimuth was 
defined as the direction from the subject tree to the center of 
the sample plot, and the second azimuth was perpendicular 
to the first (Marshall et al. 2003; Sharma et al. 2016). The 
number of trees measured was 1565, including 1498 Chinese 

fir and 67 broad-leaved trees. These 1565 trees were used to 
derive competition indices for each individual tree (but CW 
and CL models were fitted using the 1498 Chinese fir trees). 
The descriptive statistics for the 1498 Chinese fir trees are 
summarized in Table 1.

2.3 � Methods

2.3.1 � Basic model selection

The ten functions provided in Table 2 were selected as can-
didate basic models for the CW—DBH and CL—DBH rela-
tionships for individual trees (Sánchez-González et al. 2007; 
Sönmez 2009).

The candidate basic models were fitted using general-
ized linear least squares (GLS) or generalized nonlinear least 
squares (GNLS) method with gls or gnls function in the nlme 
package of R software (Pinheiro et al. 2012; R Team RDC 
2013). For model evaluation, the lack-of-fit test statistics, 
i.e., − 2 log-likelihood (− 2LL), Akaike information criterion 
(AIC), Bayesian information criterion (BIC), absolute bias 
(Bias), root mean square error (RMSE), and coefficient of 
determination (R2), were calculated.

Additionally, the predictive performance of models was 
further validated using the ten-fold cross-validation proce-
dure by calculating normalized mean square error for the test 
set (NMSE) (Levi et al. 2015) and predicted the error sum of 
squares (PRESS) (Quan 1988). The formulas were as follows:

(1)NMSE = (yj − ŷj)
2
∕(yj − yj)

2
=

∑

(yj − ŷj)
2

∑

(yj − yj)
2

(2)PRESS =

n
∑

j=1

(yj − ŷj)
2

Table 1   Descriptive statistics of Chinese fir trees (n = 1498)

Min, minimum; Max, maximum; SD, standard deviation; Cv%, coeffi-
cient of variation; DBH, diameter at breast height; H, height; A, stand 
age; CW, crown width; CL, crown length; HCB, height to crown base; 
TPH, trees per hectare

Variable Min Max Mean SD Cv%

DBH (cm) 4.0 38.8 14.44 5.36 37.08
H (m) 3.5 32.2 12.91 5.49 42.55
A (yr) 6 30 16.52 8.42 54.27
CW (m) 0.3 5.2 2.50 0.78 31.04
CL (m) 0.1 22.3 4.66 2.33 50.09
HCB (m) 2.1 24.7 8.25 4.24 51.36
TPH (trees·ha−1) 1159 3136 2217.00 639.56 28.85

Table 2   Crown width or length basic models considered in the present study

CR, crown width or length; DBH, diameter at breast height; �1 , �2 , and �3 : formal parameters

Function no Function Function form Reference

[CR1] CR = �1 + �2DBH Linear Sánchez-González et al. (2007), Sönmez (2009), Buba (2013)
[CR2] CR = �1 + �2DBH + �3DBH

2 Quadratic Sánchez-González et al. (2007), Sönmez (2009), Martin et al. 
(2012)

[CR3] CR = �1 + �2DBH + �3DBH
2 + �4DBH

3 Cubic Sönmez (2009)
[CR4] CR = �1DBH

�2 Power Sánchez-González et al. (2007), Sönmez (2009)
[CR5] CR = �1[1 − exp

(

−�2DBH
)

] Monomolecular Sánchez-González et al. (2007)
[CR6] CR = [DBH∕(�1 + �2DBH)]

2 Hossfeld Sánchez-González et al. (2007)
[CR7] CR = �1(�2)

DBH Compound Sönmez (2009)
[CR8] CR = exp(�1 + �2DBH) Growth Sönmez (2009)
[CR9] CR = �1exp(�2DBH) Exponential Sönmez (2009)
[CR10] CR = �1∕[1 + �2exp

(

−�3DBH
)

] Logistic Fu et al. (2013)

Page 3 of 17    77Annals of Forest Science (2021) 78: 77



1 3

where yj is the jth observed value in the test set, ŷj is the jth 
value predicted from yj by the model fitted by the training 
set, and yj is the mean of the observed values in the test set.

Based on model evaluation and validation, the final opti-
mum basic model was determined.

2.3.2 � Competition indices calculation

Ten candidate competition indices including four distance-
independent indices and six distance-dependent indices 
(Table 3) were compared for their performance in predict-
ing crown width and length.

To calculate the competition indices, we classified trees 
in the sample plots into subject trees and competitor trees. 
Each and every tree needs be treated as both types for given 
data quality and amounts. Identifying competitor trees are 
of great importance to derive competition indices. However, 
competitor searching methods vary among different studies 
(Bella 1971; Pommerening 2008; Wang et al. 2016). Among 
these methods, four neighboring trees proposed by Hui and 
Gadow (Hui and Gadow 2003) (four neighboring trees as 
competitors in four different directions around the subject 
tree) and fixed radii (all neighboring trees as competitors 
around the subject trees lying around a search radius with 
3.5 times the mean crown radius of canopy trees) (Mailly 
et al. 2003) have been extensively employed. In the data pre-
analysis, we applied these two methods and found that fixed 

radii worked better, which is also consistent with Lorimer 
(1983) who recommends such a rule for most applications. 
In the present study, we selected the second method to 
search competitors.

Subject trees near sample plot edges may have competitor 
trees that are out of the sample plot. These are edge effects, 
which could bring errors into estimation of competition indi-
ces (Tang et al. 2007). We employed toroidal edge correction 
(also referred to as translation) to reduce such edge effects. 
For each sample plot, make 8 copies of the original sample 
plot, then one of the copies is moved from original position 
into up, down, left, right, upper left, lower left, lower right, 
and upper right direction, respectively. So a new bigger sam-
ple plot consisted of 9 original is created (Fig. 1). When 
calculating individual competition indices, subject trees are 
defined as individuals located in original sample plot (Haase 
1995; Pommerening and Stoyan 2006; Diggle 2013). Scat-
ters distribution of crown width or length and calculated CIs 
showed that competitions have a significant effect on the 
growth of crown width and length (Figs. 2, 3).

2.3.3 � Optimum competition index identification

To determine the optimum competition index and its 
optimum position, each competition index was added 
independently with different positions to the basic model 
determined in Basic model selection section. Following 

Table 3   List of candidate competition indices

Di, diameter at breast height of subject tree i; Dj, diameter at breast height of competitor tree j; Hi, height of subject tree i; Hj, height of competi-
tor tree j; DISTij, distance between subject tree i and competitor j; BAj, basal area of competitor tree j

Index Abbreviation Formula

Distance-independent indices
  Sum of the diameters of the competitors (Steneker and Jarivis 1963) SDBH ∑n

j=1
Dj

  Sum of the basal areas of the competitors (Steneker and Jarivis 1963) SBA ∑n

j=1
BAj

  Competitor to subject tree diameter (Lorimer 1983) CSDBH
∑n

j=1
Dj

Di

  Subject tree to competitor basal area (Daniels et al. 1986) SCBA Di
2

n⋅
∑n

j=1
Dj

2

Distance-dependent indices
  Hegyi (1974) Heygi ∑n

j=1

�

Dj

Di

⋅

1

DISTij

�

  Alemdag (1978) Alem ∑n

j=1

�

� ⋅

�

Di∙DISTij

Di+Dj

�2

⋅

�

Dj∕DISTij
∑n

j=1 (Dj∕DISTij)

��

  Johann (1982) Joha ∑n

j=1

�

Hi

DISTij

⋅

Dj

Di

�

  Open Comparison (Hu 2010) OP

OP =
1

4

∑n

j=1
tij;
tij =

{

1, if DISTij ≥ Hj − Hi

0, ifDISTij < Hj − Hi

  Martin and Ek (1984) MaEk ∑n

j=1

Dj

Di

⋅ exp
�

−
16⋅DISTij

Di+Dj

�

  Jiang and Qiu (1994) JiQi Di
1

n

∑n

j=1
Dj

⋅

1

n

∑n

j=1
DISTij
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Schröder and Gadow (1999) and Mailly et al. (2003), we 
calculated the mean square error reduction (MSER) rela-
tive to a no competition index to identify the optimum 
combination of the competition index and its position for 
the crown width or length models. The formula of MSER 
was as follows:

where MSE1 is the mean square error of the basic crown 
width or crown length model and MSE2 is the mean square 
error of the models after adding the competition index.

For the CW—DBH and CL—DBH relationships, the 
optimum basic models determined in basic model selec-
tion section, and the optimum combination of competi-
tion indices and their positions identified in this section, 
were then employed as our final basic model, based on 
which the mixed-effects crown width or length models 
were further developed.

(3)MSER =

(

1 −
MSE2

MSE1

)

× 100

2.3.4 � Two‑level nonlinear mixed‑effects models

General model form  Due to hierarchical structure of data 
(i.e., trees within a sample plot, and sample plots within an 
age class), we introduced two-level random effects to our 
basic model. The first-level random effect is age class, and 
sample plot (nested in age classes) serves as the second-level 
random effect.

The formulas of two-level linear or nonlinear mixed-effects 
models can be expressed as follows:

where yijk denotes a response value of the kth observation 
(tree) on the jth group (sample plot) nested within-group 
i (age class). M is the number of first-level groups, Mi is 
the number of second-level groups within-group i, nij is the 

(4)

yijk = f
(

�ijk, tijk
)

+ �ijk, i = 1,… ,M, j = 1,… ,Mi;k = 1,… , nij
�ijk ∼ N(0, �2Rij)

Fig. 1   Illustration of the transla-
tion edge-correction methods 
used in this study
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number of observations on the jth group in group i; f(·) is 
a general, real-valued, differentiable function of a group-
specific parameter vector φijk and a covariate vector tijk. The 
within-group error εijk, which contains within-group vari-
ance and correlation, is assumed to be normally distributed 
with zero expectation and a positive-definite variance–covar-
iance structure Rij, generally expressed as a function of the 
parameter vector λ (Fu et al. 2013).

The φijk can be further written as follows:

where β is a p-dimensional vector of fixed effects. �i and �ij 
are the first and second random effects, which are independ-
ent and normally distributed q1- and q2-dimensional vectors 
with zero mean and respective variance–covariance matrices 
ψ1 and ψ2. Aijk, Bi,jk, and Mijk are design matrices. �i , �ij , 
and �ijk are mutually independent. The variance–covariance 
matrices of ψ1 and ψ2 were assumed to be unstructured.

(5)
�ijk = Aijk� + Bi,jk�i +Mijk�ij, �i ∼ N

(

0,�1

)

,�ij ∼ N(0,�2)

Determining parameter effects  In this study, all possible 
combinations of random effects were fitted and then the best 
combination was selected according to lack-of-fit statistics, 
i.e., − 2LL, AIC, BIC, and likelihood ratio test (L.Ratio).

Determining the matrix of Rij  Forestry data often exhibit 
autocorrelation and heteroskedasticity (Gregorie 1987), 
which results in incorrect standard errors and estimation 
intervals. Therefore, within-group variance and autocorre-
lation structure in Rij should be specified (Davidian 2017; 
Meng and Huang 2009). The following within-group vari-
ance–covariance matrix (Davidian 2017; Zhao et al. 2013) 
is usually used:

where �2 is a scaling factor that is equal to residual vari-
ance of the developed model, Gij is a diagonal matrix which 

(6)Rij = �2G0.5
ij
ΓijG

0.5
ij

Fig. 2   Scattered plots of crown width against different competition indices, respectively
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describes heteroscedasticity, and Γij is a matrix showing the 
autocorrelation structure of errors.

Because our data are only from one measurement period, 
autocorrelation was not considered. Therefore, Γij reduced 
to a nij × nij identity matrix, and three variance functions, 
i.e., the exponential function [Eq. (7)], the power function 
[Eq. (8)] and the constant plus power function [Eq. (9)], 
were used to reduce heteroscedasticity (Wang et al. 2019; 
Zhao et al. 2013).

where uijk is the estimated value based on fixed parameters of 
the mixed-effects models and α and β are estimated param-
eters of variance functions.

(7)varExp(�ijk) = �2exp(2�uijk)

(8)varPower(�ijk) = �2exp(u2�
ijk
)

(9)varConstPower(�ijk) = �2(� + u
�

ijk
)
2

Model prediction and evaluation  The final produced mixed-
effects models for crown width and length with optimum 
competition indices were evaluated for their predictive per-
formance. We performed a tenfold cross-validation proce-
dure and NMSE and PRESS were calculated. In addition, 
likelihood ratio tests were conducted among the optimum 
basic model, optimum basic model with the best CI, and the 
optimum mixed-effects models for the CW and CL.

3 � Results

3.1 � Determination of basic models

The lack-of-fit statistics of the candidate CW and CL 
models are summarized in Tables 4 and 5, respectively. 
Although the lack-of-fit statistics were almost identi-
cal for most of the functions, the function [CR4] (cubic 
form) showed a slightly better performance for both the 
crown width and length. NMSE and PRESS produced by 
the tenfold cross-validation also indicated slightly better 

Fig. 3   Scattered plots of crown length against different competition indices, respectively
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performance for the function [CR4]. Moreover, the scat-
tered plots of the CW or CL against DBH (Fig. 4) were 
suitfully fitted by the function [CR4]. Therefore, this 
function was selected as the basic model for modeling the 
CW—DBH and CL—DBH relationships. The optimum 
basic models are as follows:

where CWijk, CLijk, and DBHijk are crown width, crown 
length, and diameter at breast height, respectively, of the 

(10)CWijk = 0.5403DBHijk
0.5794 + �ijk

(11)CLijk = 0.4356DBHijk
0.8829 + �ijk

kth tree in the jth plot in the ith age class; εijk is a model 
error term.

3.2 � Inclusion of competition index

Based on Eq. (10) and Eq. (11), effects of adding different 
competition indices at varying positions on the improve-
ment of CW—DBH and CL—DBH models were compared 
(Tables 6 and 7).
In terms of the CW—DBH model, it can be seen from 
Table 6 that JiQi has the largest MSER of 32.38, but 
it was not selected since its insignificant coefficient. 
Therefore, the Alem was identified as the optimum 

Table 4   Lack-of-fit statistics for 
CW—DBH basic models

CR, crown width; − 2LL (df), − 2 log-likelihood (degree of freedom); AIC, Akaike information criterion; 
BIC, Bayesian information criterion; Bias, absolute bias; RMSE, root mean square error; R2, coefficient of 
determination; NMSE, normalized mean square error; PRESS, predicted the error sum of squares
b P value for each coefficient is lower than 0.05 in a T-test
c P values for one or more than one coefficient are higher than 0.05 in a T-test

Function no Fitting statistics of the candidate crown width models Cross-validation

 − 2LL (df) AIC BIC Bias (m) RMSE (m) R2 NMSE PRESS

[CR1]b 2576.04 (3) 2582 2598 0.00 0.57 0.4566 0.5535 48.7260
[CR2]c 2585.43 (4) 2593 2615 0.00 0.57 0.4584 0.5525 48.6443
[CR3]c 2595.93 (5) 2606 2632 0.00 0.57 0.4613 0.5508 48.5197
[CR4]b 2552.41 (3) 2558 2574 0.00 0.57 0.4623 0.5505 48.4941
[CR5]b 2584.56 (3) 2591 2606 0.01 0.58 0.5021 0.5623 49.5767
[CR6]b 2597.36 (3) 2603 2619 0.00 0.58 0.4823 0.5667 49.9972
[CR7]b 2601.31 (3) 2607 2623  − 0.00 0.58 0.4176 0.5699 50.1528
[CR8]b 2601.31 (3) 2607 2623  − 0.00 0.58 0.4176 0.5617 50.0737
[CR9]b 2601.31 (3) 2607 2623  − 0.00 0.58 0.4176 0.5680 50.1595
[CR10]b 2563.32 (4) 2571 2593  − 0.00 0.57 0.4490 0.5560 48.9412

Table 5   Lack-of-fit statistics for 
CL—DBH basic models

CR, crown length; − 2LL(df), − 2 log-likelihood (degree of freedom); AIC, Akaike information criterion; 
BIC, Bayesian information criterion; Bias, absolute bias; RMSE, root mean square error; R2, coefficient of 
determination; NMSE, normalized mean square error; PRESS, predicted the error sum of squares
b P value for each coefficient is lower than 0.05 in a T-test
c P values for one or more than one coefficient are higher than 0.05 in a T-test

Function no Fitting statistics of the candidate crown length models Cross-validation

 − 2LL (df) AIC BIC Bias (m) RMSE (m) R2 NMSE PRESS

[CR1]b 5353.92 (3) 5360 5376 0.00 1.49 0.4772 0.5319 332.3461
[CR2]c 5362.14 (4) 5370 5391 0.00 1.49 0.4786 0.5315 331.9982
[CR3]c 5376.44 (5) 5386 5413 0.00 1.49 0.4794 0.5316 331.9573
[CR4]b 5346.14 (3) 5352 5368 0.01 1.50 0.4903 0.5302 332.3337
[CR5]b 5353.00 (3) 5359 5375 0.02 1.50 0.5139 0.5359 334.8563
[CR6]b 5392.51 (3) 5399 5414 0.03 1.52 0.5153 0.5493 343.4263
[CR7]b 5366.53 (3) 5373 5388  − 0.01 1.51 0.4412 0.5435 339.3601
[CR8]b 5366.53 (3) 5373 5388  − 0.01 1.51 0.4412 0.5441 338.1158
[CR9]b 5366.53 (3) 5373 5388  − 0.01 1.51 0.4412 0.5435 339.3601
[CR10]b 5343.36 (4) 5351 5373  − 0.00 1.50 0.4707 0.5339 333.5384
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competition index since it yielded the second largest 
MSER of 20.44. The corresponding model form was 
written as:

Regarding crown length, the OP exhibited a better per-
formance than the other competition indices with the larg-
est MSER of 14.31 (Table 7). The corresponding model 
form was as follows:

(12)CWijk = (0.9533+0.0516Alem)DBH0.2474
ijk

+ �ijk

(13)CLijk = 0.5991DBHijk
(0.5122+0.2897OPijk) + �ijk

where JiQiijk and OPijk are JiQi and OP, respectively, of the 
kth tree in the jth sample plot in the ith age class.

In addition, the CW and CL curves overlaid on the 
measured data (DBH and the optimum competition 
index, i.e., Alem and OP) were presented in Fig. 5, which 
showed that the scattered plots were suitfully fitted by the 
Eqs. (12–13).

3.3 � Development of the two‑level mixed‑effects 
model

There are 49 ( C1
3
C1
3
 + C1

2
C2
3
C1
3
 + C1

2
C3
3
C1
3
 + C2

3
C2
3
 + C1

2
C2
3
C3
3
 

+ C3
3
C3
3
  = 49) potential combinations of random effects for 

Fig. 4   Scattered plots of crown 
width or length against DBH for 
[CR4], respectively

Table 6   Comparison of 
different competition indices 
added to the CW—DBH basic 
model [CW4]

CW, crown width; CI, competition index; DBH, diameter at breast height; �1 , �2 and �3 : formal param-
eters; Adjust R2, adjusted coefficient of determination; MSE, mean square error; MSER (%), mean square 
error reduction (%) relative to the regression model with no competition index
b P values for ϕ1, ϕ2, and ϕ3 are lower than 0.05 in a T-test
c P value for one or more than one coefficient are higher than 0.05 in a T-test
d Superior competition index selected from the two categories of CIs

CI no CW = (ϕ1 + ϕ3CI)DBHϕ2 CW = ϕ1DBH(ϕ2+ϕ3CI)

Adjust R2 MSE MSER (%) Adjust R2 MSE MSER (%)

None
SDBH 0.5091 0.2905 10.63b,d 0.5000 0.2936 9.68b

SBA 0.4653 0.3196 1.70b 0.4638 0.3201 1.54b

CSDBH 0.5115 0.2908 10.55b 0.5128 0.2898 10.87b,d

SCBA 0.4756 0.3127 3.80b 0.4913 0.3095 4.81b

Heygi 0.4715 0.3174 2.35b 0.4738 0.3165 2.63b

Alem 0.5517 0.2586 20.44b,d 0.4883 0.2839 12.67b

Joha 0.4620 0.3243 0.23c 0.4621 0.3243 0.23c

OP 0.4852 0.3145 3.24b 0.4816 0.3140 3.41b

MaEk 0.4619 0.3250 0.02c 0.4617 0.3250 0.01c

JiQi 0.6329 0.2198 32.38c 0.5048 0.2669 17.89b,d
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Eq.  (12) when considering all independent variables and 
the intercept in the basic model. When fitted to the data, all 
combinations reached convergence. Among these 49 mixed-
effects models, Eq. (14) yielded the smallest AIC (1571), 
BIC (1613) and − 2LL [1554.91 (8)]. In addition, the L.Ratio 
(L.Ratio = 105.72, p < 0.0001) also indicated the best per-
formance of Eq. (14). Therefore, Eq. (14) was the resulting 
mixed-effects model.

where �1–�3 are the fixed-effects parameters, u1i is a random-
effects parameter generated by age class for the CW model, 
and u1ij and u2ij are random-effects parameters generated by 
interaction of age class and sample plot for the CW model.

(14)CWijk = [(�1 + u1ij) + �3Alemijk]DBH
�2+u1i+u2ij

ijk
+ �ijk

Table 7   Comparison of 
different competition indices 
added to CL—DBH basic 
model [CL4]

CL, crown length; CI, competition index; DBH, diameter at breast height; �1 , �2 and �3 : formal parameters; 
Adjust R2, adjusted coefficient of determination; MSE, mean square error; MSER (%), mean square error 
reduction (%) relative to the regression model with no competition index
b P values for ϕ1, ϕ2, and ϕ3 are lower than 0.05 in a T-test
c P value for one or more than one coefficient are higher than 0.05 in a T-test
d Superior competition index selected from the two categories of CIs

CI no CL = (ϕ1 + ϕ3CI)DBHϕ2 CL = ϕ1DBH(ϕ2+ϕ3CI)

Adjust R2 MSE MSER (%) Adjust R2 MSE MSER (%)

None
SDBH 0.4919 2.2254 0.64c 0.4912 2.2311 0.39c

SBA 0.4916 2.2337 0.27c 0.4911 2.2373 0.11c

CSDBH 0.4994 2.2155 1.09b,d 0.4952 2.2143 1.14b,d

SCBA 0.4890 2.2373 0.11c 0.4890 2.2387 0.05c

Heygi 0.4952 2.2310 0.39c 0.4935 2.2269 0.58c

Alem 0.4899 2.2396 0.01c 0.4890 2.2394 0.02c

Joha 0.4918 2.2307 0.40c 0.4928 2.2290 0.48c

OP 0.5683 1.9607 12.46b,d 0.5724 1.9194 14.31b,d

MaEk 0.4927 2.2281 0.52c 0.4913 2.2296 0.46c

JiQi 0.4904 2.2386 0.05c 0.4894 2.2398 0.00c

Fig. 5   Scattered plots of crown width or length against DBH and CI for Eqs. (12–13)
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There are 49 ( C1
3
C1
3
 + C1

2
C2
3
C1
3
 + C1

2
C3
3
C1
3
 + C2

3
C2
3
 + C1

2
C2
3
C3
3
 

+ C3
3
C3
3
  = 49) potential combinations of random effects for 

Eq. (13) when considering all independent variables and 
the intercept in the basic model. When fitted to the data, a 
total of 38 combinations reached convergence. Among these 
38 mixed-effects models, Eq. (15) yielded the smallest AIC 
(4869), BIC (4912), and − 2LL [4853.39 (8)]. In addition, 
the L.Ratio (L.Ratio = 9.05, p = 0.0108 < 0.05) also indicated 
the best performance of Eq. (15). Therefore, Eq. (15) was 
the resulting mixed-effects model.

where �1–�3 are fixed-effects parameters, v1i is a random-effects 
parameter generated by age class for the CL model, and v1ij and 

(15)CLijk = (�1 + v1ij)DBH
[�2+v1i+(�3+v2ij)OP] + �ijk

v2ij are random-effects parameters generated by interaction of 
age class and sample plot for the CL model.

We used three variance functions to reduce the hetero-
scedasticity of the residuals and their performances were 
compared in terms of AIC, BIC, − 2LL, and L.Ratio. The 
results showed that the mixed-effects models with vari-
ance function exhibited better performance than the one 
without considering the variance function. Performance 
also differed among the mixed-effects models with dif-
ferent variance functions (Tables 8 and 9). According to 
AIC, BIC, − 2LL, and L.Ratio, the exponent function was 
determined as the best variance function for CW and CL 
models.

After the determination of parameter effects and 
error variance–covariance structure, the final forms of 

Table 8   The lack-of-fit statistics 
of the crown width mixed-
effects model using different 
variance functions

AIC, Akaike information criterion; BIC, Bayesian information criterion; − 2LL (df), − 2 log-likelihood 
(degree of freedom). bL.Ratio, the value of likelihood ratio test, which was calculated with respect to model 
(14)

Model Variance function AIC BIC  − 2LL (df) L.Ratio p value

(14) None 1571 1613 1554.91 (8)
(14.1) ConstPower 1568 1621 1548.23 (10) 6.69b 0.0353
(14.2) Power 1568 1615 1549.67 (9) 5.24b 0.0220
(14.3) Exponent 1567 1614 1548.54 (9) 6.38b 0.0116

Table 9   The lack-of-fit statistics 
of the crown length mixed-
effects model using different 
variance functions

AIC, Akaike information criterion; BIC, Bayesian information criterion; − 2LL(df), − 2 log-likelihood 
(degree of freedom). cL.Ratio, the value of likelihood ratio test, which was calculated with respect to model 
(15)

Model Variance function AIC BIC  − 2LL (df) L.Ratio p value

(15) None 4869 4912 4853.39 (8)
(15.1) ConstPower 4817 4870 4796.61 (10) 56.78c  < 0.0001
(15.2) Power 4817 4865 4799.06 (9) 54.33c  < 0.0001
(15.3) Exponent 4798 4846 4780.25 (9) 73.15c  < 0.0001

Fig. 6   Residual plot and QQ 
plot of the selected crown width 
mixed-effects model [Eq. (16)]
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the CW and CL nonlinear mixed-effects models for 
Chinese fir in Fujian Province, southeastern China, 
were proposed in Eq.  (16) and Eq.  (17). The resid-
ual plots and QQ plots are shown in Figs.  6 and 7, 
respectively.

where

where

(16)
CWijk = [(0.4229 + u1ij) − (8.730e − 4)Alemijk]DBH

0.7212+u1i+u2ij

ijk
+ �ijk

ui =
[

u1i
]

∼ N
{

[0],�i = (0.0014)
}

uij =

[

u1ij
u2ij

]

∼ N

{[

0

0

]

,�i =

(

0.0704 −0.0507

−0.0507 0.0415

)}

�ij ∼ N(0,Rij = 0.1052G0.5
ij
ΓijG

0.5
ij
),Gij = exp (0.0732yi),Γij = Ini

(17)
CLijk = (1.3129 + v1ij)DBH

[0.1669+v1i+(0.3562+v2ij)OP] + �ijk

vi =
[

v1i
]

∼ N
{

[0],�i = (0.0029)
}

vij =

[

v1ij
v2ij

]

∼ N

{[

0

0

]

,�i =

(

0.0555 −0.0164

−0.0620 0.0057

)}

�ijk ∼ N(0,Rij = 0.6124G0.5
ij
ΓijG

0.5
ij
),Gij = exp (0.0958yi),Γij = Ini

3.4 � Model prediction and evaluation

The results of L.Ratio (Table 10) indicated that in comparison 
to Eq. (10) and Eq. (12), the addition of random parameters 
in Eq. (16) could significantly improve the predictive ability 
for crown width. A similar improvement for crown length can 
also be found in Eq. (17) relative to Eq. (11) and Eq. (13). In 
addition, these improvements were reflected by NMSE and 
PRESS of the ten-fold cross-validation. Figure 8 also showed 
that the final models were unbiased, and model fits were good.

4 � Discussion

We found that including CIs as predictor variables could 
significantly improve the performance of CW—DBH and 
CL—DBH basic models (Tables 6 and 7). The first hypoth-
esis proposed in the Introduction was therefore accepted. 
Similar results were reported by Sharma et al. (2016), Thorpe 
et al. (2010), and Davies and Pommerening (2008), all who 
suggested that competition could significantly affect crown 
dimension and should be included into crown models. The 
CIs are comprehensive indicators describing the competition 

Fig. 7   Residual plot and QQ 
plot of the selected crown 
length mixed-effects model 
[Eq. (17)]

Table 10   Comparisons among 
optimum basic model, optimum 
basic model with optimum 
competition index and optimum 
mixed-effects model for crown 
width and length, respectively

Adjust R2, adjusted coefficient of determination; − 2LL (df), − 2 log-likelihood (degree of freedom); AIC, 
Akaike information criterion; BIC, Bayesian information criterion; Test, likelihood ratio test; L.Ratio, the 
value of likelihood ratio test; NMSE, normalized mean square error; PRESS, predicted the error sum of 
squares

Equation Adjust R2  − 2LL (df) AIC BIC Test L.Ratio p value NMSE PRESS

(10) 0.4620 2552.41 (3) 2558 2574 0.5505 48.4941
(12) 0.5517 2211.93 (4) 2220 2241 (12) vs. (10) 340.48  < 0.0001 0.4390 38.7194
(16) 0.7469 1548.54 (9) 1567 1614 (16) vs. (12) 663.39  < 0.0001 0.2651 23.3120
(11) 0.4900 5346.14 (3) 53,527 5368 0.5302 332.3337
(13) 0.5724 5119.63 (4) 5128 5149 (12) vs. (14) 226.51  < 0.0001 0.4559 285.3949
(17) 0.6301 4780.25 (9) 4798 4846 (14) vs. (18) 339.38  < 0.0001 0.3861 221.7118
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status of individual trees and hence can well represent an 
individual tree’s space occupation and allocation of resources 
(light, water, or nutrients), which in turn determines growth 
(Kahriman et al. 2018). In addition to CW and CL models, 
CIs have been extensively used to develop individual-tree 
growth models. Many authors (Brand 2011; Collet and Che-
nost 2006) have found individual-tree growth models includ-
ing CIs could provide for more accurate estimation.

The distance-dependent competition index, Alem, per-
formed best in modeling the CW—DBH relationship 
(Table 6). Similarly, the distance-dependent competition 
index, OP, showed best performance in the CL—DBH 
model (Table 7). Our second hypothesis, i.e., the distance-
dependent CIs perform better than distance-independent 
CIs for CW—DBH and CL—DBH relationship, was also 
accepted, which suggested that the distance-dependent 
CIs more appropriately and adequately describe competi-
tive situations among individual trees in a stand than the 
distance-independent ones (Contreras et al. 2011; Sharma 
et al. 2016). Therefore, the interactions of the trees in a 
spatial manner over the restricted distances is essential for 
growth dynamics of the tree crowns. Many authors have 

also documented that distance-dependent CIs are superior 
to distance-independent ones, especially in mixed-species 
stands (Contreras et al. 2011; Quinonez-Barraza et al. 2018; 
Sharma et al. 2016). Additionally, the model showed that 
CW significantly increases with increasing Alem (Fig. 9). 
Alem, proposed by Alemdag (1978), is an index defined on 
the basis of the growing space for the subject tree (Burkhart 
and Tomé 2012). Therefore, trees with higher Alem or trees 
with larger growing space and area potentially available is 
expected to have larger crown sizes. OP was significantly 
positively related to CL (Fig. 9). Since OP reflects the degree 
to which the subject tree in the spatial structural unit is not 
shaded by competitor trees (Hu 2020). OP is an indicator 
of individual-tree light environment status in a forest stand 
and its relationship with CL suggested that trees with larger 
OP have stronger competitive ability for light which is con-
sidered as the major limiting resource for individual-tree 
growth. Therefore, a high OP will increase light supply, light 
capture, and light use efficiency, resulting in a larger crown.

A disadvantage of distance-dependent competition index 
is that it requires tree attributes and tree locations, which are 
expensive and labor intensive to acquire. However, with the 

Fig. 8   Plots of predicted values 
against observed values of the 
final models

Fig. 9   Effect of competition 
indices on the crown width or 
length respectively for Chinese 
fir. The curves were produced 
using parameter estimates of 
optimum basic models with 
optimum competition index 
[Eqs. (12–13)]
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development of remote sensing and geographic information 
systems (such as Light Detection and LiDAR) have facili-
tated the acquisition of tree-level spatial and dimensional 
data for the entire stands (Packalen and Maltamo 2006; 
Rowell 2009; Suratno et al. 2009), and are increasingly 
being used for forest and natural resource applications (Con-
treras et al. 2011; Suratno et al. 2009). The crown width and 
length models that depend on DBH and distance-dependent 
CIs in this study can be easily integrated with LiDAR inven-
tory data and will be a useful tool to evaluate the influences 
of alternative management measures over time.

Except DBH and the competition index, which affect the 
crown width and length significantly, the crown structure 
is also largely influenced by site index, which is the most 
widely used measures of potential forest productivity and 
has strongly piratical utilized as a key input to both forest 
processes-based models and empirical growth and yield 
models (Amponsah et al. 2004; Fish et al. 2011; Yang 1998). 
Therefore, in this study, the SI was calculated respectively 
for the 16 sample plots by SI model (base age 20) devel-
oped by Duan and Zhang (2004) for the Chinese fir plan-
tation to estimate the site quality. Unfortunately, because 
the results were not significant, and the site index was not 
left in the model. It might be attributed to the small study 
area, resulting in little difference in site quality. Addition-
ally, many authors included other stand- or individual tree-
level variables to model crown structure. For instance, Fu 
et al. (2017) evaluated 18 variables, including stand age [A 
(years)], height [H (m)], height to crown base [HCB (m)], 
site index [SI (m)], plot dominant height [DH (m)], and total 
diameter [LDTD (cm)]; four variables, i.e., DBH, DH, HCB, 
and H, were left the final model. For our model, we did not 
include other variables because more independent variables 
would reduce model generality (Hasenauer 2006; Vanclay 
1994). Furthermore, additional independent variables also 
entail more labor and time, making data collection more 
expensive. Additionally, more independent variables impact 
model convergence and computational speed of parameter 
estimation (Montgomery et al. 1982).

Generality, precision, and reality are three important 
properties of a model that researchers strive to maximize 
(Levins 1966). However, Levins (1966) argued one of the 
three properties has to be sacrificed in order to achieve a 
higher level of the other two. Normally, many models 
have sacrificed generality to enhance reality and precision 
(Burkhart and Tomé 2012). Burkhart and Tomé (2012) 
documented that there is an increased interest in improv-
ing generality of models in the context of rapidly changing 
management and environmental conditions. In our study, 
we only included two variables to model CW and CL to 
enhance generality.

We produced two-level nonlinear mixed-effects models 
for predicting CW and CL. The performance of models 

significantly improved after introducing random effects. 
For instance, in comparison to the optimum fixed-effects 
CW model [Eq. (12)] and CL model [Eq. (13)], the AIC of 
the optimum mixed-effects models for CW and CL dropped 
by 653 and 330 respectively, and the adjusted R2 increased 
by 0.1952 and 0.0577. Moreover, the model prediction and 
evaluation using the tenfold cross-validation further sup-
ported the conclusion that the mixed-effects approach had 
significantly improved the models’ predictive performance. 
NMSE and PRESS were significantly reduced. The advan-
tage of using a mixed-effects modeling approach to model 
crown structure has been also documented by other authors 
(Fu et al. 2013, 2017; Sharma et al. 2016). For instance, 
using a nested, two-level nonlinear mixed-effects approach, 
Fu et al. (2013) improved the prediction accuracy of crown 
width by including a site index and sample plot as random 
effects.

Mixed-effects models are tools used to deal with repeated 
measures and spatially-correlated data (Pinheiro and Bates 
2006). Many authors documented that introducing random 
effects could correct or reduce autocorrelation and hetero-
scedasticity (Hasenauer 2006; Montgomery et al. 1982; 
Pommerening and Stoyan 2006; Wang et al. 2016). A simi-
lar result was found in our study. In addition, we further 
introduced three variance functions to refine our model. 
Finally, based on the lack-of-fit statistics, the exponent func-
tion was determined as the optimum option for reducing the 
heteroscedasticity of the residuals. Similar results were also 
reported by Zhao et al. (2013), Calama and Montero (2005) 
and Wang et al. (2019).

Determining parameters is of great importance when 
developing a mixed-effects model (Calama and Montero 
2005). In previous studies, a common approach has been to 
first determine parameter effects and then incorporate addi-
tional predictor variables as fixed effects into a model (Bud-
hathoki et al. 2008; Calama and Montero 2005). The addi-
tional predictor variables could introduce random effects (Fu 
et al. 2017), which often was not accounted for in previous 
studies. In this study, we determined parameter effects after 
including CIs in the models, and the random effects that the 
CIs introduced could be therefore be well represented.

The traditional method of computing CIs, we applied in 
this study, migth result in significant bias on the predicted 
variable of interest. Compared to the traditional method, 
more modern and more appropriate methods of computing 
CIs simultaneously with the model parameters have been 
used in a few studies, which can be able to describe compe-
tition impact on growth and development of individual-tree 
characteristics and produce more accurate output (Pom-
merening et al. 2011; Sharma and Brunner 2017). There-
fore, the improving methods of computing CIs are strongly 
recommended in the future. Additionally, climate change 
has been reported to affect crown structure (Carnicer et al. 

77   Page 14 of 17 Annals of Forest Science (2021) 78: 77



1 3

2011; Solberg 2004). For example, Carnicer et al. (2011) 
documented that drought resulting from climate change has 
a long-lasting chronic effect on crown structure, including 
increased crown defoliation rates for all tree species exam-
ined. It is imperative to integrate climatic variables into 
crown width and length models when data is available.

5 � Conclusion

We produced CW and CL models using a two-level nonlin-
ear mixed-effects approach. Our models showed that includ-
ing CIs as predictor variables could significantly improve the 
performance of the models. Similarly, the second hypoth-
esis, that distance-dependent CIs are superior to distance-
independent ones when modeling CW and CL, was also 
supported. Compared with the CW and CL models with no 
random effects, the performance of the two-level nonlinear 
mixed-effects models improved. It is hoped that the final CW 
and CL models will contribute to the scientific management 
of the Chinese fir in other sites and under different environ-
mental conditions.
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