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Abstract

Key message: A vegetation analysis revealed the extent of recolonization by native vegetation of a 25-year-old
Cupressus spp. plantation in northern Iran. A young indigenous Quercus-Carpinus community replaced the conifers
in the low-slope areas with deeper, heavier, and more fertile soils.

Context: Reforestation of degraded or clear-cut-harvested lands can modify site conditions, facilitating succession
and reestablishing native forests. It is critical to investigate the plantation in terms of vegetation, natural
regeneration, and environmental variables to better understand ecological restoration.

Aims: This study examines the recolonization of a Cypress plantation by native vegetation in the deforested
Hyrcanian broadleaf forests and determines which edaphic, topographic, and structural variables are correlated to
the degree of reconstitution.

Methods: A systematic random sampling method was used to establish 55 plots in a 25-year-old Cupressus
plantation, followed by plot classification using TWINSPAN and environment-vegetation analysis using CCA. The
classification groups were compared using an analysis of variance. Tested variables included floristic composition,
stand structure, regeneration, topography, and soil parameters.

Results: Four vegetation groups were identified based on an analysis of floristic composition. The first group
demonstrated the least degree of native forest reconstitution, as planted conifers (Cupressus spp.) were established
alongside pioneer broadleaf shrubs, enhancing Zelkova carpinifolia (Pall.) K.Koch regeneration. While most conifers
disappeared in the third group, Carpinus betulus L., Zelkova carpinifolia, and Quercus castaneifolia C.A. Mey became
dominant. The most influential environmental factors in reestablishing indigenous communities were a low-slope,
heavier soil with a higher organic carbon and potassium content.

Conclusion: On low-slope lands with fertile soils, the Hyrcanian native broadleaf forest can recolonize the
coniferous plantation; however, on steep lands with poor sandy soils, planted Cupressus trees as well as relatively
xerophytic shrubs in the understory may establish.
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1 Introduction
Human exploitation of natural resources has increased
due to population growth, scientific advancement, and
technological development, and as a result, forests are
being degraded worldwide, with developing countries ex-
periencing the highest deforestation rates. Afforestation
through plantation is one method of rehabilitating de-
graded lands, protecting soil and water, combating
desertification, preparing wood, and increasing carbon
storage (Chen et al. 2010; Lozano et al. 2014; Doelman
et al. 2020). By improving site conditions, the plantation
can accelerate the succession process (Cusack and
Montagnini 2004). Trees and canopies can positively
affect ecosystem changes (Dijkstra 2001), and because
of tree leaves decomposing on the forest floor, soil
ecosystems can change (Binkley 1995). Trees and
other forest plants with extensive roots influence the
microbial biomass of soil by regulating the carbon
cycle between the atmosphere and the soil (Brown
et al. 2002). Plantation results in biological diversity
and changes in species composition due to various
factors such as upper-story plant structure and compos-
ition (Tao Lu 2011), light transmission, chemical charac-
teristics of litter, stem flow (Barbier et al. 2008), and
succession history. The current composition of understory
species in temperate forests results from previous manage-
ment actions (Poirier et al. 2016).
One of the most critical aspects of the plantation is

species selection. Improper species selection can lead to
substantial economic and ecological costs. At regional
and local scales, replacing indigenous forests with non-
indigenous species can result in significant changes in
the diversity and composition of plant communities
(Woziwoda et al. 2011). Conifer species can be used as
pioneer plants to expedite succession, paving the way for
establishing plant communities and restoring biological
diversity to degraded ecosystems. Numerous studies in-
dicate that planting conifers alters the soil’s physical-
chemical properties and mineral cycle, resulting in long-
term adverse changes in regional ecosystems. Bergès
et al. (2017) demonstrated that conifer plantation slows
the process by which post-agricultural forests revert to
their ancient broadleaf forest conditions. On the other
hand, Humphrey et al. (1998) stated that the plantation
of conifer species prepares the environment for the
emergence of indigenous plants and animals. Addition-
ally, they emphasized the benefits of conifer planting in
terms of increasing the diversity of indigenous species.
Furthermore, according to Peláez Silva et al. (2019),
conifer plantations favored the rehabilitation process by
altering the structure of native understory vegetation
and soil ecological properties. Shakespeare (2020) dem-
onstrated in a study of 50-year-old conifer plantations
that regions with the greatest species diversity have the

least understory cover or pine tree density as well as the
highest Rhamnus cathartica L. population as an aggres-
sive species. Nowadays, it is critical to investigate the ef-
fects of conifer and broadleaf plantations on biodiversity,
vegetation, and regeneration to better understand rees-
tablishment stages, ecological restoration, and biodiver-
sity conservation (Zeleny and Schaffers 2012).
In northern Iran, Hyrcanian forests are temperate de-

ciduous broadleaf forests and date from the Tertiary geo-
logical period (Sagheb Talebi et al. 2014). These forests
sparsely contain only five conifer species naturally occur-
ring in the Hyrcanian flora (Assadi 1988–2020). However,
since the 1960s, some non-indigenous species have been
introduced into these forests, and in some regions, follow-
ing years of tree harvesting, they have been used for plan-
tation. Understanding the establishment of plantations in
temperate broadleaf forests, the succession process, and
ecosystem rehabilitation can significantly help in under-
standing current conditions and future plans and in deter-
mining appropriate approaches if necessary.
In this study, we analyzed the vegetation and stand struc-

ture of a 25-year-old coniferous plantation to determine the
extent of recolonization by native broad-leaved species and
then examined the relationship between recolonization de-
grees and several environmental variables. The primary re-
search objectives were (a) to determine whether Cupressus
spp. or other species have established themselves in this
plantation 25 years after clear-cutting native forest and
planting, (b) whether the reestablished vegetation is homo-
geneous or consists of distinct groups, (c) classifying those
groups according to their characteristics (plant compos-
ition, diversity, and stand structure), and (d) identify ed-
aphic, topographic, and structural variables that are
correlated to the degree of reconstitution.

2 Methods
2.1 Study site
This research was conducted in Mazandaran Province,
Iran, in series 11, region 48, 22 km from the city of Royan.
This area has a humid temperate climate with an average
annual temperature of 16.35 °C. Annual precipitation av-
erages between 1307 and 864 mm at the nearest weather
stations. Quercus castaneifolia C.A. Mey, Carpinus betulus
L., and Parrotia persica C.A. Mey are the dominant spe-
cies in natural forests in this region. In 1993, 50 ha were
cleared and planted with two conifer species: Cupressus
sempervirens L. and C. arizonica Greene (2 × 2 m spa-
cing). These areas were typically enclosed for approxi-
mately two decades, and livestock was prohibited;
however, livestock has entered the stand infrequently in
recent years due to fence failures in some parts. As a re-
sult, the study area has a consistent succession history and
forest management.
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2.2 Data collection
The survey was conducted using a 70 × 30 systematic
random sampling method. Then, a primary field survey
was used to control the dispersion of sample plots, yield-
ing a total of 55 plots measuring 20 × 20 m (Kent and
Coker 1994; Chytry and Otpková 2003) (Fig. 1). Fifty
plots were located within the enclosed plantation area,
while five additional plots were located outside the plan-
tation, on open land adjacent to the enclosed plantation
area. The understory, overstory, and ground plant spe-
cies, their abundance-dominance (Braun-Blanquet 1946),
the diameter at breast height (dbh), the height, and
crown canopy of trees, as well as their density, regener-
ation, and environmental factors (topography and soil
variables) were recorded in each plot. Each of these plots
had four randomly selected soil samples taken from a
depth of 0–30 cm (using an auger device). Each plot’s
samples were combined and transported to the labora-
tory for testing (Jafarzade et al. 2021). The flora of Iran
(Assadi 1988–2020) and flora Iranica were used to iden-
tify plant samples (Rechinger 1963–2005).

2.3 Analysis method
TWINSPAN (Hill 1979) was used to analyze the vegeta-
tion data, and different degrees of reconstitution of native
broadleaved forests and diagnostic species were identified.
The diagnostic value of species was determined using the
fidelity concept and JUICE (ver. 7.0) (Chytrý et al. 2002).

The classified groups were then compared in terms of
vegetation structure, plant species diversity, and environ-
mental variables. The comparison was conducted using
analysis of variance and mean comparisons in SPSS 22
software.
Since three plots (i.e., 1, 2, and 11) had few old uncut

trees (Parrotia, Carpinus, and Quercus), they were ex-
cluded from the analysis to eliminate the direct effect of
distance on seed dispersal.
The Shannon Wiener index (Shannon and Weaver

1949), Simpson index (Simpson 1949), Menhinick and
Margalef richness indices (Whittaker 1977), Pielou even-
ness index (Pielou 1975), and Sheldon evenness index
were used to determine the species diversity. Moreover,
the CCA (canonical correspondence analysis) was used
to define the variation gradient, species-environment re-
lationship, and environmental factors affecting the estab-
lishment or reestablishment of indigenous forests. PC-
Ord 4 and Canoco 4.5 were used in this analysis.

3 Results
3.1 Floristic composition and classification of vegetation
There were 98 plant species identified (Fig. 2), 22 of
which were trees and shrubs (Phanerophyte). The most
abundant life forms in the studied area were hemicryp-
tophytes and phanerophytes. The plots investigated were
classified into four distinct groups (Fig. 2). Group 1 con-
sisted of conifer trees with some broadleaf understory

Fig. 1 Study area along with sample plots
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shrubs (Jasminum fruticans L., Rhamnus pallasii Fisch.
and C.A. Mey, Lonicera iberica M. Bieb, and Teucrium
polium L.). Group 2 included a mixture of coniferous
and broadleaf trees (Cupressus spp. and Zelkova carpini-
folia (Pall.) K. Koch), as well as Crataegus oxyacantha L.
and Cornus australis C.A.Mey. Group 3 was dominated
by broadleaf tree species (Quercus castaneifolia, Carpi-
nus betulus, among others), while group 4 was domi-
nated by herbaceous species, with five plots outside the
plantation area.

3.2 Stand formation and regeneration
Based on the results, conifers dominated in group 1, ac-
counting for 520 trees per hectare, while broadleaf trees
were scarce, and some shrubs were identified as under-
story species (Table 1). J. fruticans, Rh. pallasii, and L.
iberica were the dominant shrub species, accounting for
1115 individuals/ha. Zelkova carpinifolia and Crataegus
oxyacantha had the highest natural regeneration rates in
this group, respectively (Table 1).

The density of conifers was reduced to 139 trees per
hectare in group 2, while the density of broadleaf tree
species had significantly increased, primarily of young
trees with an average height of 4.5 m (Table 1). In this
group, the most regeneration occurred in Z. carpinifolia,
C. oxyacantha, and Carpinus betulus, respectively.
Broadleaves reached a density of 1877 individuals/ha

in group 3. On the other hand, the number of conifers
planted per hectare had decreased to 199 trees. C. betu-
lus, Z. carpinifolia, and Q. castaneifolia were dominant
tree species, while Ruscus hyrcanus Woronow and Cra-
taegus oxyacantha were dominant shrub species. Z. car-
pinifolia, C. betulus, C. oxyacantha, and Q. castaneifolia
had the highest regeneration rates, respectively (Table
1). Group 4 was dominated by herbs, but some tree and
shrub species had established themselves. C. oxyacantha
and Z. carpinifolia had the highest regeneration rates,
respectively (Table 1).
The degree of reconstitution of native broadleaved

forests was explained using the results of vegetation
classification and the survey of stand formation and

Fig. 2 TWINSPAN results
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dominant tree species. Group 1: coniferous plantation
with a predominance of established conifers (Fig. 3).
Group 2: coniferous plantation with a relative propor-
tion of indigenous broadleaf species; group 3: conifer-
ous plantation with the reestablishment of indigenous
broadleaf species and natural conifer removal (Fig. 3);
and group 4: clear-cut lands that have been aban-
doned without plantation and previously used for
grazing.

3.3 Structure of stands
Figure 4 depicts the distribution curves for the diameter
classes of the major species within each group. Z. carpi-
nifolia curves were uneven-aged in all three groups, but
group 1 had a higher regeneration rate than the other
two. C. betulus and Q. castaneifolia had comparable
diameter distributions; however, Q. castaneifolia exhib-
ited a decrease in smaller diameters and regeneration in
group 3. Cupressus curves demonstrated an even-aged
form, and a comparison of three groups revealed a de-
cline in this species’ density in the region. Broadleaf spe-
cies were uncommon in group 1, occurring primarily in
seedling or sapling stages. As a result, no broadleaf stand
formed, and the tree distribution curve in diameter clas-
ses could not be plotted.

3.4 Plant diversity
The results indicated that the third group had the most
significant species richness, while the Shannon and
Simpson diversity indices did not differ significantly
(Table 2).

3.5 Comparison of environmental variables in different
groups
The results indicated that the average percentages of or-
ganic carbon (OC) and potassium (K) in the soils of
groups 2 and 3 were significantly higher than those in
group 1. Phosphorus and nitrogen levels in this group's
soil were higher, though the differences were insignifi-
cant (Table 3). According to the results, group 1 had a

significantly lower average percentage of soil clay than
groups 2, 3, and 4 (as well as a higher average percent-
age of soil sand). In other words, the soil was signifi-
cantly lighter in groups 1 (conifers) than in groups 2 and
3 (broadleaves). There was a significant difference be-
tween groups regarding the litter layer, with groups 2
and 3 having a greater depth and coverage percentage
than groups 1 and 4. Additionally, group 1 had a signifi-
cantly higher slope than groups 2 and 3 (Table 3).

3.6 Vegetation-environment analysis
At the 0.01 level, the CCA eigenvalues and ordination
results (Table 4) demonstrated that the first and second
axes were significant and interpretable. The first three
axes account for 72% of the variance in the species-
environment relationship. CCA analysis revealed a
strong positive correlation between the first axis and the
slope variable and a negative correlation between the
first axis and the soil OC and K parameters (Fig. 5). The
second axis showed a strong positive correlation with
altitude and clay content but a strong negative correl-
ation with sand content. The position of species and
plots along the aforementioned environmental factor
gradient is depicted in Fig. 5. Sampling plots associated
with conifer establishment were primarily located in the
positive direction of the first axis and the negative direc-
tion of the second axis (plots 31, 32, 42, 44, 52, 53, 51,
55, 45, 43, 46, and 43). In contrast, plots associated with
broadleaf species reestablishment were primarily located
in the negative direction of the first axis (plots 20, 23,
26, 49, 47, 35, 34, 17, 46, 24, and 36).

4 Discussion
Nowadays, the demand for reforestation of degraded
lands using former indigenous species has increased
(Forbes et al. 2021). Natural regeneration and indigenous
broadleaf species can help restore the ancient broadleaf
forests' conditions (Bergès et al. 2017). On the other
hand, passive restoration is based on natural regener-
ation with minimal human intervention (Morrison and

Fig. 3 A view of forest stands in group 1 (left side) and group 3 (right side)
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Lindell 2011). Certain areas of Hyrcanian forests have
been clear cut and replanted with conifer saplings. The
condition of parts of these plantations after 25 years was
investigated in this study. As a result of these findings,

portions of these coniferous plantations have been nat-
urally replaced by native broadleaf species (group 3). On
the other hand, coniferous species remained dominant
in other regions (group 1). Several parts had a condition

Fig. 4 Distribution of trees in diameter classes in three groups (group 1—coniferious plantation without the establishment of broadleaf trees,
group 2—coniferious plantation with the relative reestablishment of broadleaf species, and group 3—coniferious plantation with the
reestablished indigenous broadleaf forest) (a–d). e Tree distribution in diameter classes of dominant species in group 3

Table 2 Comparison of the average diversity indices (± SD) in each group

Group 1 Group 2 Group 3 Group 4

Mean of species no. in each plot 11.3 ± 1.9 ab 10.0 ± 1.9 b 12.2 ± 2.0 a 9.6 ± 0.5 b

Simpson index 0.86 ± 0.03 a 0.84 ± 0.04 a 0.86 ± 0.03 a 0.85 ± 0.03 a

Shannon index 2.22 ± 0.19 a 2.06 ± 0.21 a 2.22 ± 0.17 a 2.03 ± 0.18 a

Menhinick index 1.43 ± 0.10 ab 1.31 ± 0.16 bc 1.51 ± 0.16 a 1.20 ± 0.12 c

Margalef index 2.48 ± 0.4 ab 2.19 ± 0.34 b 2.68 ± 0.41 a 2.07 ± 0.21 b

Sheldon index 0.82 ± 0.05 a 0.81 ± 0.05 a 0.77 ± 0.07 a 0.80 ± 0.09 a

Pielou index 0.92 ± 0.19 a 0.90 ± 0.21 a 0.89 ± 0.15 a 0.90 ± 0.07 a

Different letters in the same rows show significant difference (p < 0.05) amongst vegetation groups
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between these two states (group 2). The establishment
of broadleaf species resulted in a relative increase in spe-
cies richness, although this increase was not statistically
significant for Shannon and Simpson diversity indices.
However, the composition of species and their density var-
ied significantly between groups. After 27 years in temper-
ate forests, the absence of vegetation management in
coniferous plantations has increased ground vegetation
richness and deciduous broadleaf trees' dominance (Khlifa
et al. 2020). Although conifer plantation altered the spe-
cies composition in Mongolia, it had no discernible effect
on plant diversity and richness (Sukhbaatar et al. 2018).
According to the findings of numerous studies, coniferous
plantations can either increase (Humphrey et al. 1998) or
decrease species diversity (Paritsis and Aizen 2008; Bremer
and Farley 2010) depending on a variety of factors such as
plant species and succession stage.
According to the results, the plants with the highest

regeneration rates in the studied area were Zelkova

carpinifolia, Crataegus oxyacantha, and Carpinus betu-
lus. Z. carpinifolia had the highest regeneration density
in coniferous stands, while C. betulus (along with Quer-
cus castaneifolia) had the highest regeneration density in
broadleaf stands. Unlike the other groups, the third
group (broadleaf) saw a considerable increase in C. betu-
lus individuals (Fig. 4c). As illustrated in Fig. 4e, Z. car-
pinifolia outnumbered C. betulus in diameters greater
than 5 cm, while C. betulus outnumbered Z. carpinifolia
in diameters less than 5 cm. This indicates that Z. carpi-
nifolia was dominant in the past and early stages of rees-
tablishment (as seen in coniferous stands), but with time
and the proper environmental conditions, C. betulus be-
came dominant in the subsequent stages. This is due to
the changes in the ecosystem following broadleaf trees
and shrubs’ development, the gradual decline of conifer-
ous species, and the establishment and development of
C. betulus and Q. castaneifolia. Oak regeneration oc-
curred concurrently with common hornbeam (C.

Table 3 Comparison of the mean (± SD) amongst vegetation groups regarding environmental variables

Environmental variables Group 1 Group 2 Group 3 Group 4

Sand % 38.2 ± 10.3 a 29.9 ± 8.7 ab 31.6 ± 6.5 ab 27.7 ± 7.9 b

Silt % 30.6 ± 5.9 a 31.7 ± 3.8 a 31.6 ± 4.9 a 33.7 ± 6.1 a

Clay % 31.1 ± 5.7 b 38.3 ± 4.1 a 37.4 ± 3.3 a 38.7 ± 2.5 a

Organic carbon % 2.7 ± 1.5 b 3.7 ± 1.0 a 3.8 ± 1.4 a 2.9 ± 0.6 ab

pH 7.7 ± 0.3 a 7.5 ± 0.4 a 7.5 ± 0.3 a 7.4 ± 0.3 a

Total N 0.24 ± 0.11 a 0.31 ± 0.09 a 0.30 ± 0.09 a 0.25 ± 0.07 a

Available P (mg/kgsoil) 5.6 ± 2.3 ab 8.9 ± 5.0 a 7.5 ± 2.3 ab 4.7 ± 2.3 b

Available K (mg/kgsoil) 245 ± 61 b 379 ± 70 a 354 ± 72 a 391 ± 60 a

Litter depth (cm) 0.6 ± 0.2 b 1.4 ± 0.4 a 1.6 ± 0.3 a 0.5 ± 0.0 b

Humus depth (cm) 0.0 ± 0.0 b 0.4 ± 0.3 a 0.6 ± 0.3 a 0.0 ± 0.1 b

Litter coverage % 28 ± 11 b 54 ± 16 a 69 ± 25 a 24 ± 5 b

Tree crown cover % 41 ± 22 a 35 ± 16 a 48 ± 27 a 3 ± 4 b

Shrub crown cover % 29 ± 17 b 60 ± 21 a 62 ± 21 a 18 ± 24 b

Ground vegetation cover % 43 ± 27 b 42 ± 22 b 43 ± 18 b 100 ± 0 a

Moss coverage % 35 ± 29 a 30 ± 25 a 17 ± 21 a 25 ± 7 a

Altitude (m a.s.l) 791 ± 30 a 809 ± 37 ab 831 ± 31 bc 851 ± 10 c

Aspect (degree) 106 ± 23 a 85 ± 38 a 77 ± 40 a 81 ± 20 a

Slope % 64 ± 17 a 34 ± 15 b 30 ± 13 b 58 ± 22 a

Different letters in the same rows show significant difference (p < 0.05) amongst groups

Table 4 Eigenvalues and correlation coefficients for species-environment interactions along three major axes of the CCA

Axis 1 Axis 2 Axis 3

Eigenvalue 0.45** 0.30** 0.13 ns

Cumulative percentage variance explained of species data 11.4 19 22.2

of species-environment relation 36.8 61.6 72.0

Pearson correlation 0.87** 0.76* 0.72 ns

Kendall (rank) correlation 0.56** 0.50* 0.41 ns

The results of Monte Carlo test: **Significant at p < 0.01 level, *Significant at p < 0.05 level
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betulus) but at a slower rate. It is worth noting that C.
betulus seeds are small and winged, whereas oak seeds
were heavy and oversized. Wind, gravity, or frugivory
are used to disperse light seeds in tree species, whereas
only frugivory and gravity are used to disperse heavy
seeds in tree species (Burrows 1994). As a result, Q. cas-
taneifolia seeds disperse and establish more slowly than
C. betulus seeds (Sikkema et al. 2016). The oak did not
regenerate naturally in group 1 and had a low

regeneration rate in group 2, whereas it had a relatively
high rate of regeneration in group 3 (61 stems/ha)
(Table 1). In conjunction with an increase in the number
of C. betulus trees in the region, this phenomenon indi-
cates the succession stages and return of coniferous
stands to the Q. castaneifolia-C. betulus community as a
Hyrcanian climax community (Borji et al. 2018; Gholiza-
deh et al. 2020). This is also confirmed by the TWIN-
SPAN results, which classify Q. castaneifolia and C.

Fig. 5 CCA diagram, displaying plots (Δ) and species (+) in the ordination space. The arrows representing the environmental variables indicate
the direction of maximum change of that variable across the diagram. Due to limited diagram space, part of the species' name is mentioned in
the figure. The full name of the species is given in Fig. 2
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betulus and several other significant Hyrcanian trees
such as Parrotia persica, and floor plants such as Cycla-
men coum Mill., Euphorbia amygdaloides L., Carex sp.,
Primula heterochroma stapf, and Tamus communis (L.),
as group 3 diagnostic species (Fig. 2). C. betulus and de-
ciduous oaks are the forest community's dominant spe-
cies in European mixed broadleaf forests, particularly in
lowlands (Sikkema et al. 2016). The Q. castaneifolia-C.
betulus community is one type of climax forest found in
Hyrcanian forests (Sagheb Talebi et al. 2014). Addition-
ally, Q. castaneifolia had a relative decrease in lower di-
ameters and regeneration in group 3, as illustrated in
Fig. 4b. Since Q. castaneifolia is a light-demanding tree
(Babaei et al. 2016), regeneration has slightly decreased
as the canopy in group 3 has become denser (Table 1)
and less light reaches the forest floor.
In group 1, shrub species such as Jasminum fruticans,

Rhamnus pallasii, Lonicera iberica and Teucrium polium
were considered diagnostic species (Fig. 2) as they were
abundant in the understory beneath the conifer trees. The
shrub species mentioned above are tolerant of harsh con-
ditions and thrive in harsh environments (Ravanbakhsh
and Moshki 2016; Togonidze 2011). Thus, these species
can be considered pioneer species for establishing an indi-
genous broadleaf forest instead of a coniferous plantation.
Other studies have demonstrated that conifer plantations
(pine) increased the number of xerophytes and light-
demanding species in the understory (Bergès et al., 2017;
Sukhbaatar et al. 2018). An increase in regeneration of
light-demanding species such as Zelkova carpinifolia and
Rhamnus pallasii was observed in the conifer plantation.
In similar results, Rhamnus cathartica has developed in
50-year-old pine plantations in the Huron natural area in
the eastern US (Shakespeare 2020). Based on the preced-
ing, reestablishment stages from planted conifer stand to
reestablished broadleaf forest in the area are depicted in
Fig. 6.
Possessing a time course of the plantation's changes

with permanent plots (BACI-design: Bennett and
Adams, 2004) provides valuable and detailed informa-
tion; thus, this type of plan is recommended for future
studies.
The study area was surrounded by a vast habitat of in-

digenous Hyrcanian forests, which facilitated seed dis-
persal (large-scale distance effect). The wind dispersal of
Carpinus is effective, both to escape from density, or

distance, dependent high mortality and to increase the
chance of arriving at canopy gaps, where seedling sur-
vival rate is high (Shibata and Nakashizuka 1995). The
mature fruits of Zelkova fall with the entire twig (shoot-
seed), and the still attached dried leaves acted as a para-
chute. Shoot-seeds are successfully established in dis-
turbed sites along steep slopes (Oyama et al. 2018).
Additionally, there are some uncut old trees in the west-
ern part of the research area, suggesting that these old
trees may be necessary for seed distribution to achieve
quick and successful reestablishment of broadleaf forests
within the nearby group 3 plots (small-scale distance ef-
fect). As a result, it seems that wind dispersal is initially
responsible for the regeneration of trees and shrubs in
the study area (Zelkova and Carpinus). However, after
the tree’s growth and crown formation, birds play a role
in this process, as Crataegus oxyacantha, Cornus austra-
lis, Jasminum fruticans, Rhamnus pallasii, and Lonicera
iberica all produce fleshy fruits that birds can consume.
Furthermore, some deciduous trees in the secondary for-
est area reach seed-bearing age after approximately 10
years. For example, C. betulus has a minimum seed-
bearing age of 10–30 years (Pijut 2008).
When the CCA results are compared, it is evident that

Cupressus arizonica and Rhamnus pallasii are located in
the positive direction of the first axis, implying a steeper
slope and a lower concentration of OC and K in the soil.
On the other hand, broadleaf species such as Q. casta-
neifolia, C. betulus, Parrotia persica, and Acer cappado-
cicum occur in the negative direction of the first axis,
indicating that the first axis has a lower slope and soils
with a higher content of OC, K, and nitrogen. Rh. palla-
sii is a tolerant shrub that thrives on slopes with
nutrient-deficient and immature soils (Ravanbakhsh and
Moshki 2016). Zarafshar et al. (2020) investigated oak
forests and concluded that while planting Cupressus ari-
zonica does not increase soil nitrogen or richness, estab-
lishing oak forests does. In Europe, the oak-hornbeam
community is a classic example of a temperate forest
with fertile soils (Sikkema et al. 2016).
On the second axis of the CCA diagram, it can be ob-

served that Cupressus sempervirens and Z. carpinifolia
are oriented negatively on lighter soils (with a higher
amount of sand). Simultaneously, P. persica, Q. castanei-
folia, and A. cappadocicum are located in the positive
direction of the second axis, indicating that they are

Fig. 6 Stages of vegetation reestablishment, from conifer plantations into indigenous broadleaf forest
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established on heavier soil. Furthermore, C. betulus ex-
hibits an intermediate condition in terms of soil texture.
According to other studies, Z. carpinifolia prefers well-
drained soils with greater dispersal ability on light sandy
soils (Bétrisey et al. 2018). C. betulus, on the other hand,
grows in a variety of soil types, from heavy clay to sandy
light soils, and is only intolerant of acidic soils (Sikkema
et al. 2016). The soils in the studied region were all cal-
careous, and the results indicated that the pH values of
the various groups did not differ significantly.
The research conducted in coniferous plantations in

southern-east Canada demonstrated that controlling and
eradicating indigenous vegetation decreased the soil's
exchangeable K without affecting the soil’s nitrogen stor-
age (Khlifa et al. 2020). This paper’s findings demon-
strate that gradually replacing coniferous plantations
with indigenous vegetation can significantly increase soil K
without affecting nitrogen or phosphorus levels (Table 3).
By examining the positions of plots on the CCA dia-

gram, the environmental gradient that determined
whether broadleaf species were replaced or not in the
coniferous plantations could be soil texture and slope.
Conifers have established themselves on steep lands with
poor sandy soils due to reduced competition from
broadleaf species (Table 3 and Fig. 5). Broadleaf species
dominated conifers on low slopes with heavier soil tex-
tures and richer soils. While the number of conifers in
group 3 is small, their average height (6.5 m) is greater
than that of conifers in group 1, which is 4 m, indicating
that group 3 has more prosperous environmental
conditions.
According to local residents and the forestry adminis-

tration, and based on available field evidence (dead trees
and stumps), the coniferous plantation thrived for the
first 10 years after planting but has since begun to dis-
appear due to the recolonization of indigenous broadleaf
species in some locations of the area. Conifers appear to
have been eradicated due to their inability to compete
with broadleaves on low slopes with heavier, richer soils.
In other words, broadleaves performed better in the
environment mentioned above. Gymnosperms are re-
stricted to areas where growth of angiosperm competi-
tors is limited, for example, due to cold or nutrient
scarcity. Biogeographic evidence supports this predic-
tion, since conifers are largely confined to high latitudes
and elevations or soils deficient in nutrients (Bond,
1989). According to Mingzuo et al. (2004), while needle
leaf species are oppressed in the middle-age community,
broadleaf species prioritize the natural community suc-
cess process.
In the study area, Zelkova carpinifolia regeneration

was abundant in coniferous stands (group 1). This
species has regenerated in coniferous understory
stands with less diversity and density than other

species. However, because broadleaf species cannot
compete with conifers in this group (steep slopes with
poor sandy soils), the majority of Zelkova saplings
have naturally been eliminated. As a result, they have
remained in the regeneration stage for the last two
decades. Similar research found that while Z. serrata’s
regeneration density was high on slopes beneath the
crown canopy, its survival rate was higher in gaps
(Nagamatsu et al. 2002). Z. serrata developed primar-
ily on disturbed sloped sites in Japan (Oyama et al.
2018), indicating the species’ tolerance for harsh en-
vironmental conditions is similar to those found in
our study region. Z. carpinifolia and Castanea devel-
oped in Georgia during the warmest period of the
mid-Holocene (Kvavadze and Connor 2005). However,
an investigation of 78-year-old Z. carpinifolia trees in
the Hyrcanian Region revealed that while temperature
had little effect on growth, February precipitation had
a significant positive effect on annual growth rings
(Balapour and Kazemi 2012). Thus, the development
of Zelkova can be viewed through the lens of climate
change, which requires additional investigation.
Group 4 pastures were formed due to clear-cutting

indigenous forest trees, which occasionally resulted in
removing saplings and twigs. After clear-cutting the
primary forest, there was no coniferous plantation on
these lands, and the reestablishment line differed.
Crataegus oxyacantha and Zelkova carpinifolia regen-
eration were the precursors to the emergence of
woody species, and Jasminum fruticans was absent.
The plants' diversity in this group was comparable to
those in group 3, but richness (as measured by the
Menhinick and Margalef indices) was significantly
lower than group 3 (Table 2).
By examining the CCA diagram, it was discovered that

plots of these lands (3, 4, 5, 6, and 10) tended toward
the positive direction of the second axis, indicating a
higher altitude and heavier soils, and were environmen-
tally similar to plots of group 3 (Table 3). Regarding or-
ganic carbon and fertility, group 4 soils were
intermediate and did not significantly differ from the
other groups. The establishment of indigenous species
on abandoned agricultural lands gradually increases the
soil's organic carbon, total nitrogen, phosphorus, and
potassium content (Wang et al. 2011). However, succes-
sion remained at the primary stage in group 4 of the
studied area due to grazing, sapling removal, high grass
species density (100% herb-layer cover), and competi-
tion, environmental conditions such as soil condition
and plant composition remained stable, while species
richness decreased. The vegetation that occurs as a re-
sult of succession in coniferous plantations can aid in es-
tablishing and restoring native trees and shrubs
following exploitation (Alday et al. 2017).
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5 Conclusion
Native broad-leaved Hyrcanian species can recolonize
planted areas in low-slope lands with fertile soils where
topographic and edaphic conditions allow them to com-
pete with planted conifers. However, after 25 years of
coniferous plantation, Cypress trees are established
along with relatively xerophytic shrubs on steep lands
with poor sandy soils, where conditions are not optimal
for temperate deciduous trees.
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