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Abstract 

Key message Here, we present a workflow for determining the optimal tree height model and calibration design for 
forests affected to varying degrees by anthropogenic disturbance. For mixed Araucaria-Nothofagus forests, tree height 
predictions in newly surveyed stands are most accurate and effective when the height of up to five random trees is 
measured to recalibrate predefined nonlinear mixed-effects models.

Context Araucaria-Nothofagus forests in Chile are affected by anthropogenic disturbances such as intentional forest 
fires, grazing, and seed harvesting, causing forest structure to become more heterogeneous. This also challenges tree 
height predictions, which are required for yield estimations, carbon accounting, and forest management, since height 
measurements of standing trees are often considered too costly, difficult, and imprecise.

Aims How does the structure of these forests vary by different levels of anthropogenic disturbance? Which models 
for estimating tree height of Araucaria araucana and Nothofagus pumilio are most reliable and generally usable? And 
considering their application in stands they have not been fitted to, which calibration design is optimal for these 
models?

Methods Twelve stands were surveyed and classified into four different intensities of anthropogenic disturbance. In 
25 to 36 plots per stand, horizontal point sampling measurements of stem diameter as well as of height of selected 
trees were carried out. Different quantitative stand-level properties were calculated to determine forest structure, 
which was compared among stands by cluster analysis. To identify the optimal height-diameter (H–D) model, simple 
models including diameter only as well as generalized models including stand variables were tested, each additionally 
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extended by a nonlinear mixed-effects (NLME) modeling framework accounting for nested and random effects. 
To further determine tree height in new stands, the optimal model calibration design was identified involving the 
empirical best unbiased predictor technique.

Results Forest structure greatly varied among stands affected by different levels of anthropogenic disturbance, 
which challenged the development of tree height prediction models. Of all the simple H–D models considered, 
the Gompertz model was the best for A. araucana and the Näslund model for N. pumilio. The models progressively 
improved by adding stand variables and using NLME techniques. However, our final model comparisons indicate that 
a calibrated simple NLME model without stand variables should be preferred. It was further found that the optimal 
calibration design is to use five randomly selected trees.

Conclusion Although anthropogenic disturbances can have a complex effect on height-diameter relationships, the 
same H–D model can be used for stands representing different anthropogenic disturbance levels and recalibrated by 
cost-effective measurements.

Keywords Height-diameter relationship, Model selection, Nonlinear mixed effects (NLME), Random and fixed effects 
calibration, Generalized model, Forest structure

1 Introduction
In predicting future ecological dynamics, an under-
standing of the influence of anthropogenic disturbance 
on forests is of crucial importance, as these can weigh 
considerably in driving tree community dynamics — 
even compared to climate change (Danneyrolles et  al. 
2019). Araucaria araucana (Mol.) K. Koch, also known 
as the monkey puzzle tree, is an endemic tree species in 
the mountains of South-Central Chile and is typically 
mixed with Nothofagus pumilio (Poepp. & Endl.) Krasser, 
Nothofagus dombeyi (Mirb.) Oerst, or Nothofagus antarc-
tica (G. Forst.) Oerst. (Veblen 1982). It is currently listed 
as an endangered species in the IUCN Red List of Threat-
ened Species and was declared a natural monument in 
1990, with logging completely prohibited (Fuentes‐Ram-
irez et al. 2020).

In Chile, there are 254,217  ha of A. araucana natural 
forests. The forest composition changes with topography 
(i.e., aspect), altitude, precipitation, natural disturbances, 
etc. The mixed A. araucana-N. pumilio forests are mainly 
found between 1000 and 1600  m asl in the Andes Cor-
dillera, but also mixed A. araucana-N. antarctica for-
ests could be found at the same altitude. Around 48% of 
the A. araucana dominated and natural forests in Chile 
are protected as state-protected wild areas (SNASPE) 
(Hernández et  al. 2022). These protected forests remain 
minimally affected by anthropogenic disturbance, at least 
in the last 30 years since the protection has been in place. 
The other 52% of the forest are affected in their struc-
ture and forest composition because of different levels of 
anthropogenic disturbances such as human-caused wild-
fires, seed harvesting and gathering, decreased regen-
eration by livestock pressure mainly by cattle and goats, 
illegal firewood harvesting, land use changes as well as 
the introduction of invasive plant species (i.e., pines), and 
seed predation by invasive animal species (González and 

Veblen 2007; Zamorano-Elgueta et al. 2012; Molina et al. 
2015; Hernández et  al. 2022). Thus, a large proportion 
of Araucaria-Nothofagus forests are affected to varying 
degrees by anthropogenic disturbance. These are often 
associated with negative impacts on successional pro-
cesses and lower canopy cover values (Echeverría et  al. 
2007; Kutchartt et al. 2022). One of the clearest signs of 
degradation is the lack of natural regeneration (Premoli 
et al. 2013; Fuentes-Ramírez et al. 2019). Such anthropo-
genic disturbances can therefore challenge forest func-
tioning and also its management. This implies the need 
for new research on the structure of forests under differ-
ent anthropogenic disturbance levels, on management 
practices, and on strategies and tools for forest invento-
ries, in particular for Araucaria-Nothofagus forests.

In this article, we are examining and comparing com-
mon and more advanced options to develop tree height 
models, which are important tools for forest inventory 
and planning, using A. araucana and N. pumilio as exam-
ples. In Chile, these two species, a slow-growing relict 
conifer and a relatively short-lived shade-intolerant hard-
wood, are both important species with high ecological 
and economic importance. Technical reports by Gayoso 
(2013a, 2013b) presented height-diameter models for 
these two species, but they have not been assessed by 
cross-validation. This issue refers to a general question 
that also applies to models for other tree species: How 
well can existing models be applied to stands that have 
been altered in their structure by anthropogenic distur-
bances? It is expected that anthropogenic disturbances 
will cause changes in stand structure and generate vari-
ability that will lead to large errors in model predictions if 
such stand-specific differences are ignored.

Structure is the most obvious characteristic of a forest 
stand and can be obtained by measuring the diameter 
at breast height (DBH, 1.3  m aboveground), height, or 
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crown radius of trees in the stand. The height-diameter 
relationship is mainly used to describe the vertical struc-
ture of forest stands (González et al. 2001). DBH can be 
easily and accurately measured during fieldwork. How-
ever, height measurements are often considered difficult 
and costly because they are time-consuming, visibility is 
often impaired, and the probability of human measure-
ment errors is high (Colbert et  al. 2002). It is therefore 
a common approach in forestry to measure the DBH of 
all trees and the height of a certain number of sample 
trees and then construct a height-diameter model (H–D 
model) and use it to predict the missing height of trees 
(Adame et al. 2008) to obtain the input values needed for 
subsequent studies.

Different models have been proposed to determine 
tree height-diameter relationships for different tree spe-
cies and regions. Curtis (1967), for example, summarized 
many available linear H–D models. Because of the theo-
retical maturity of linear models at that time, they were 
often the preferred choice. However, today, nonlinear 
models are widely used to predict tree height because of 
the nonlinear nature of the height-diameter relationship 
and modern statistical software can easily fit such models 
providing accurate predictions (Huang et al. 1992; Paulo 
et  al. 2011). Metrics such as the cross-validation-based 
root-mean-square error and the percentage relative 
standard error have been reported to be very useful for 
selecting accurate and robust models with different pur-
poses (Sileshi 2014; Kutchartt et al. 2021).

In addition, H–D models can be described as sim-
ple (or local) and generalized (or regional) (Gollob et al. 
2018). Simple H–D models, which interpret height as a 
function of DBH only, are easily applicable without addi-
tional measurement, but do not consider the variability 
of height-diameter relationships among stands. However, 
height-diameter relationships vary between stands and 
are influenced by the growing environment and stand 
conditions. Even within the same stand, height-diameter 
relationships can change over time (Schmidt et al. 2011). 
Generalized H–D models use stand variables to estimate 
local variation of the height-diameter relationship, avoid-
ing to fitting separate simple H–D model for each stand 
(Ciceu et  al. 2020). Commonly used stand variables are 
quadratic mean diameter, basal area per hectare, and 
stand density, which require no additional measurements 
beyond the full DBH of the stand, making the generalized 
and simple models equally applicable (Mehtätalo et  al. 
2015). Calama and Montero (2004) summarized four 
approaches to include stand variables into models, of 
which the two-stage approach (Ferguson and Leech 1978) 
has often been used in later studies (e.g., Ciceu et  al. 
2020). The two-stage approach involves fitting a separate 
height-diameter curve for each sampling unit (plot or 

stand) in the first stage to obtain estimates of the param-
eters and then using the stand variables as covariates to 
explain the parameters in the second stage. An alterna-
tive to such a stepwise approach is to do an exhaustive 
search across all combinations of stand variables.

The ordinary least square (OLS) technique was the first 
tool for modeling height-diameter relationship (Huang 
et  al. 2000). However, H–D models developed with this 
method usually faced some problems. For example, 
the data used were obtained from longitudinal meas-
urements or were spatially or temporally correlated, 
violating the assumption of random and independent 
observations for modeling and thus leading to biased 
estimates of parameter confidence intervals (e.g., Dorado 
et al. 2006; Özçelik et al. 2018; Ciceu et al. 2020; Ogana 
2021). To deal with such autocorrelation problem from 
data, the nonlinear mixed-effects (NLME) models usu-
ally fitted by maximum likelihood (ML) method were 
used (Ercanlı 2020). The parameters of NLME models 
are divided into two groups in its model structure: fixed 
effects and random effects parameters (Pinheiro and 
Bates 2000). The fixed effects parameters show trends in 
height common to the stand in general, while the random 
effects parameters account for differences among stands 
and define variation in the height-diameter relationship 
(Calama and Montero 2004). And NLME technique can 
be applied both to simple and generalized H–D models 
(Gómez-García et  al. 2015). Furthermore, if height and 
DBH measurements are taken in a new stand, the ran-
dom parameters of the mixed effects model can be eas-
ily calibrated for that given stand (Mehtätalo et al. 2015). 
All these model types could be helpful in addressing the 
variability caused by anthropogenic disturbances at the 
stand scale. For estimating height for A. araucana and N. 
pumilio in South-Central Chile, no such NLME models 
have been developed so far.

We hypothesize that forest structural characteristics 
are affected by the level of anthropogenic disturbance 
and that this has to be considered in the development of 
tree height models, which is exemplified here for A. arau-
cana and N. pumilio in South-Central Chile. In order to 
facilitate model application in new stands, our objectives 
are to use independent data to assess the prediction per-
formance of varying H–D models and to determine their 
best calibration design.

2  Material and methods
2.1  Study area
The data were collected from 12 stands distributed in the 
mixed Araucaria-Nothofagus forests of the Andes Cor-
dillera in the Araucaria region (Fig.  1). The study area 
ranged in elevation from 1304  m (stand 5) to 1691  m 
(stand 9) above sea level. The slope in the stands was 
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gentle or flat, and the tree layer was mainly composed of 
A. araucana and N. pumilio. N. dombeyi was also present, 
but it occurred rarely and in only two of the stands. Based 
on CR2MET Version 2.0 gridded climate data, the aver-
age annual precipitation ranged from 1930  mm (stand 
7–12) to 2582  mm (stand 6) between 1979 and 2019. 
Over the same time interval, the mean maximum sum-
mer temperature ranged from 18.1 °C (stand 6) to 21.5 °C 
(stand 7–12), and the mean minimum winter tempera-
tures ranged from 5.8 °C (stands 2 and 4) to 6.7 °C (stands 
7–12) (Boisier et  al. 2018). The dominant soil type in 
the study area is andosols (IUSS Working Group 2015), 
which are formed in volcanic tephra and are typically 
quite young and fertile. CIREN (2002) reported more 
detailed information for the soils in the western part of 
the study area. They are characterized by a sandy-loamy 
texture, moderately rapid permeability, and excessive 
drainage. While moderately acidic (pH from 5.9 to 6.1) 
and rich in organic carbon in the top layer, the effective 
cation-exchange capacity is very low and the base satura-
tion only 2–5%.

Araucaria araucana (Molina) K. Koch is often referred 
to as the monkey puzzle tree because of its extremely 
straight, cylindrical bole and whorled branches (Veblen 
1982). It is a long-lived, slow-growing but huge relict 
conifer native to South-Central Chile and southwestern 
Argentina (Mundo et al. 2013). A. araucana can reach a 
height of 45 m, a diameter of up to 2 m, and a maximum 

age of at least 1300 years (Montaldo 1974; Premoli et al. 
2013). It is characterized by a thick insulating bark that 
can exceed 15  cm and a concentration of leaves in the 
crown, often more than 15  m above the ground, which 
makes this species resistant to fires (Dickson et al. 2021) 
which have been shown to be a key disturbance control-
ling the dynamics of A. araucana-Nothofagus forests 
(Veblen 1982).

Nothofagus pumilio (Poepp. & Endl.) Krasser is a 
broad-leaved tree native to Chile and Argentina, com-
monly known as lenga beech in English (Barstow et  al. 
2017). This species can reach a height of over 30  m, a 
diameter of 1.7 m, and an age of 350 years and is a highly 
valuable source of quality timber for the timber industry 
(Magnin et  al. 2021). Overall, N. pumilio appears to be 
less healthy and vigorous under shaded conditions com-
pared to other Nothofagus species such as N. betuloides 
(Rebertus and Veblen 1993). The relatively short life span 
and shade intolerant characteristic make this species an 
obligate seeder that will regenerate rapidly from seed 
post-fire (Dickson et al. 2021).

The 12 selected stands fell into four defined levels of 
anthropogenic disturbance that were in detail described 
and assessed by Hernández et al. (2022): none (stands 4, 
5, and 6), low (stands 7, 8, and 9), medium (stands 10, 11, 
and 12), and high (stands 1, 2, and 3). Classified as “none” 
were protected stands such as those in the Conguillio 
National Park and the Malalcahuello National Reserve, 

Fig. 1 Study area and distribution of 12 selected stands in the northeastern sector of the Araucanía region in southern Chile. Stands are located 
in La Fusta, Conguillío (National Park), Malalcahuello (National Reserve) and El Naranjo and are distinguished by four levels of anthropogenic 
disturbance: none, low, medium, high
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which remained minimally affected by anthropogenic 
disturbance at least in the last 30 years. The “low” level 
was given for stands affected by seed extraction, cat-
tle ranching, and old logging operations. Classified as 
“medium” were stands that also faced seed extraction in 
combination with browsing, mainly of cattle, and active 
logging of N. pumilio. The “high” level was assigned to 
stands disturbed by intensive grazing and seed collection. 
These were also affected by a large fire in 2002 (17 years 
prior to data collection) (González and Veblen 2007), 
which adds a higher effect of natural disturbance that is 
distorting the anthropogenic influence there.

2.2  Data collection
The selected stands were systematically sampled using a 
randomly selected point in each stand as a starting plot 
from which the entire stand was covered with plots 30 m 
apart. The number of plots per stand ranged from 25 to 
36. At each plot, horizontal point sampling was carried 
out using a basal area factor of 4  m2 per hectare. DBH 
was measured for all selected trees, and height was 
measured for one-third of them using a Haga device. All 
heights mentioned in this study are the total tree heights.

The complete database involves three tree species, 
A. araucana, N. pumilio, and N. dombeyi, and contains 
valid data for a total of 3124 trees, of which a total of 873 
trees were measured for both DBH and height (Table 1). 
All these data were considered in the calculation of the 
stand variables. Of these, 451 height-diameter data pairs 
of A. araucana and 380 data pairs of N. pumilio were 
extracted for the study of the height-diameter relation-
ship for these two species. In order to develop a reli-
able height-diameter model for each species, data from 
stands 2 and 12 were used as a validating database, and 
data from the remaining 10 stands were used as a fitting 
database (Fig. 2). For N. dombeyi, not enough data pairs 
were given. The complete database has been published 
on Zenodo (Zhou et al. 2022).

2.3  Height‑diameter model development
The definition of appropriate height diameter models 
can be a challenging task. Here, we have taken up rec-
ommendations by Tischer et  al. (2020). We begin with 

an exploration of simple models and continue by exam-
ining model extensions that account for covariates and 
random effects (Fig. 3). First, the best-performing simple 
H–D model in the fitting database was selected for each 
of the two species from 16 alternative simple models 
(Mehtätalo et  al. 2015) that were widely used by com-
mon statistical evaluation criteria and residual diagnos-
tics. Then, 25 alternative stand variables were calculated 
and included as covariates in the simple models by three 
different approaches. The stand variable or combination 
of stand variables that brought the most improvement 
to the fit and prediction was selected, thus extending the 
simple model upwards to the generalized H–D model. 
On this basis, the spatial correlation of the four differ-
ent sites was considered by the nonlinear extra sum of 
squares (Huang et  al. 2000). At last, nonlinear mixed-
effects models were developed in three steps according 
to Fang and Bailey (2001) and Dorado et  al. (2006) to 
address the effects of different stands on the H–D rela-
tionship. After development, the models were calibrated 
using eight different calibration designs to check how 
well the models performed in predicting tree height in 
new stands and to find the optimal calibration design.

A description of the specific technical processes for 
each step can be found in the annex: Detailed workflow 
for height-diameter model development. As a result 
of these processes, a total of four H–D models were 
developed for each tree species (Table  2). The R script 
used and an exemplary analysis are provided through a 
GitHub repository (Zhou and Zwanzig 2022).

3  Results
In the following, first, the results of the k-means cluster-
ing analysis of the different stand variables will be given 
to see if the four different levels of anthropogenic distur-
bance are clustered, i.e., have converging forest structural 
attributes. Next, the results of model development for 
each of the two tree species will be presented in subsec-
tions based on simple model selection, the inclusion of 
stand variables, the comparison of H–D models for dif-
ferent sites, the development of the NLME model, and 
finally on its calibration and height prediction.

Table 1 Summary of the complete database

DBH diameter at breast height, M mean value, N number

Species DBH (cm) Height (m) N Height‑
diameter data 
pairs (N)M Min–max M Min–max

A. araucana 73.17 5–238 18.67 1.8–44 1733 451

N. pumilio 48.91 3–193 14.97 2.5–30 1170 380

N. dombeyi 83.45 12–217 21.63 2.5–35 221 42

total 64.80 3–238 17.20 1.8–44 3124 873
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3.1  Anthropogenic disturbance levels and stand variables
The k-means clustering analysis with predetermined 4 
clusters did not result in the same classification for the 12 
stands as given by the 4 anthropogenic disturbance levels, 
but some associations seem to be strong (Fig. 4). Stands 
1 and 2 from “high” level were clustered into one cluster, 
as were stands 7 and 8 from “low” level. Both clusters are 
located on opposite ends of the first axis. All stands from 
“medium” level were clustered into one cluster, together 
with stand 5 from level “none.” This cluster is located next 
to the “high”-level cluster but differs more strongly to the 
last cluster according to stand characteristics loaded on 
the second axis. The last cluster included stands 4 and 6 
from level “none,” stand 9 from “low” level, and stand 3 
from “high” level. Overall, stands with no to low anthro-
pogenic disturbance showed a stronger variation than 
stands with a medium to high level. Among the stand 
variables used for clustering analysis, RNNP , RNAA , 

NAA , and HdNP were the most significant for cluster-
ing (p < 0.001), indicating that the number of A. araucana 
and N. pumilio in mixed stands and their proportions, as 
well as the DBH diversity of N. pumilio, was important for 
clustering. Hdom , HdomNP , and HdomAA , representing the 
dominant height in the stands, also had a significant effect 
on clustering (p = 0.003, 0.006, and 0.013), but of the vari-
ables representing the dominant diameter in the stand, 
only DBHdomNP had a significant effect (p = 0.025). The 
differences of these stand variables that contribute signifi-
cantly to clustering can be seen in Fig. 9 in Appendix.

3.2  Height‑diameter model development and calibration
3.2.1  Araucaria araucana (Molina) K. Koch

Simple model selection Of all sixteen simple mod-
els tested, SM12 (Gompertz) was chosen as the simple 
model for A. araucana. Among the alternative models 

Fig. 2 Height plotted against DBH for the complete, fitting, and validating database of A. araucana (a, b, and c) and N. pumilio (d, e, and f)
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where PRSE did not show excessive uncertainty in the 
parameter estimates, SM12 showed the lowest RMSE for 
both fitting and cross-validation data, the lowest MAE 
and the highest R2 values (Table 3).

The residual diagnostics showed heteroskedasticity 
(Fig. 10 in Appendix), as expected for the increasing vari-
ability of errors. Different values of k were tried according 
to the weighting factor wi = 1∕DBHk

i  , and it was found 
that the most effective improvement in heteroskedas-
ticity was observed from the residual plots when k = 1 
(Fig. 10c), similar to other studies (e.g., Huang et al. 1992).

Inclusion of stand variables The comparison of the 
three different approaches to construct generalized mod-
els revealed different pros and cons. The results of the 
first approach were not satisfactory. Even when five stand 
variables were added, the fitting statistics of the model 

was just similar to that of the model developed by add-
ing only one stand variable in the other two approaches. 
The second approach brought more improvement to the 
goodness of fit of the models but was subject to insig-
nificant parameters. The third “exhaustive” approach 
provided the most improvement in the goodness of fit of 
the model, regardless of the total number of parameters, 
but at the cost of requiring much more time to obtain the 
results than the first two approaches. Therefore, ignor-
ing the time cost, we found the exhaustive approach to be 
the best choice for including stand variables in the H–D 
model for A. araucana.

This “exhaustive” approach was processed as follows: 
after specifying the total number of parameters for the 
model, the stand variable or combination of stand vari-
ables that improved the model fits the most could be 
derived. They were included in the simple model by 

Fig. 3 Workflow for height-diameter model development and calibration. A detailed description of the approaches and techniques applied during 
each step of the workflow is provided in the appendix. See Table 12 for a list of simple models (SM1–SM16) tested

Table 2 Overview of common and more advanced tree height models developed

Model Details

Simple H–D model DBH was used as the only explanatory variable

Generalized H–D model Stand variables were added as covariates to the simple H–D model

Simple NLME H–D model Random effects were added to the simple H–D model

Generalized NLME H–D model Random effects were added to the generalized H–D model
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parameters, and then, these alternative generalized H–D 
models were refitted in the fitting database, and their 
goodness of fit and prediction statistic were calculated 
and compared with SM12 AA (Table  4). The models 
explained more and more of the variability as more stand 
variables were included.

The H–D model developed for A. araucana in this study, 
after considering model complexity, model performance, 
and biological interpretation of stand variables, was as 
follows:

where Hij and DBHij are the height and diameter at breast 
height of j th tree in i th stand, HdomAAi is the average 
height of the three thickest A. araucana trees in the i 
th stand, and RangeDBHAAi is the difference between 
the diameters at breast height of A. araucana in the i th 
stand.

The effects of these two stand variables on the height-
diameter relationship were simulated (Fig.  5). The effect 
of HdomAA on the height-diameter relationship was sig-
nificantly greater than that of RangeDBHAA . As HdomAA 
increased, the tree height also increased, and this effect 
had a greater impact on thicker trees than on thinner 

(1)
Hij = 1.3 +

(

a0 + a1 ×HdomAAi

)

× e−(b0+b1×RangeDBHAAi)×e
−c0×DBHij

+ �ij

ones. Conversely, as RangeDBHAA increased, tree height 
decreased, and this effect was more pronounced for thin-
ner trees and probably negligible for thicker trees.

Fig. 4 Clusters of anthropogenic disturbances levels. Results refer to a k-means clustering analysis with observations represented along the first 
two principal components explaining ca. 33% and 20% of the observed variance in forest structure. Numbers refer to stands with varying levels of 
anthropogenic disturbance: none (stands 4, 5, and 6), low (stand s7, 8, and 9), medium (stands 10, 11, and 12), and high (stands 1, 2, and 3)

Table 3 A. araucana simple model selection results. For formulae 
of models SM1-SM16, see Appendix Table 12. Prediction statistic 
refers to the cross-validation (CV)-based prediction accuracy

Bold, selected model. Italic, models with PRSE > 25%

Model Uncertainty of 
the parameter 
estimates

Goodness‑of‑fit 
statistics

Prediction 
statistic

PRSE (%) MAE RMSE R2 RMSE (CV)

SM1 AA 5.48 3.31 4.346 0.680 4.353

SM2 AA 5.36 3.377 4.409 0.671 4.415

SM3 AA 5.39 3.382 4.414 0.671 4.420

SM4 AA 8.95 3.34 4.343 0.681 4.352

SM5 AA 13.04 3.512 4.481 0.660 4.492

SM6 AA 12.44 3.374 4.367 0.677 4.375

SM7 AA 5.34 3.373 4.404 0.672 4.410

SM8 AA 57.48 3.313 4.345 0.680 4.359

SM9 AA 14.29 3.296 4.313 0.685 4.324

SM10 AA 18.99 3.283 4.324 0.684 4.335

SM11 AA 38.51 3.273 4.319 0.684 4.331

SM12 AA 9.05 3.282 4.311 0.685 4.322
SM13 AA 30.45 3.322 4.35 0.680 4.362

SM14 AA 32.25 3.333 4.357 0.679 4.370

SM15 AA 36.20 3.312 4.34 0.681 4.352

SM16 AA 51.84 3.298 4.336 0.682 4.347
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Comparison of H–D models among different sites Equa-
tion  (1) was used as a reduced model when comparing 
height-diameter relationships among four different sites. 
The full model extended by the indicator variable method 
could be written as follows: Both the F-test and the Lakkis-Jones test used in this 

study showed nonsignificant results (Table  5), which 

(2)

Hij = 1.3 +
(

a0 + Δ1x1 + Δ2x2 + Δ3x3 + a1 ×HdomAAi

)

× e−(b0+�1x1+�2x2+�3x3+b1×RangeDBHAAi)×e
−(c0+�1x1+�2x2+�3x3)×DBHij

+ �ij

Table 4 Results from the inclusion of stand variables for SM12 AA

Total number of 
parameters

Expressions for parameters Goodness of fit Prediction statistic Max. VIF

MAE RMSE R2 RMSE (CV)

3 a = a0
b = b0
c = c0

3.282 4.311 0.685 4.322

4 a = a0 + a1 × HdomAA

b = b0
c = c0

3.138 4.201 0.701 4.235

5 a = a0 + a1 × HdomAA

b = b0 + b1 × RangeDBHAA
c = c0

3.100 4.167 0.706 4.210

6 a = a0 + a1 × HdomAA + a2 × GCdAA

b = b0 + b1 × RangeDBHAA
c = c0

3.088 4.126 0.712 4.181 2.134

7 a = a0 + a1 × HdomAA + a2 × BAAA
b = b0 + b1 × DBHmaxAA

c = c0 + c1 × RNAA

3.068 4.107 0.715 4.178 2.161

8 a = a0 + a1 × HdomAA + a2 × HdAA + a3 × BA

b = b0

c = c0 + c1 × HdAA + c2 × ALT

3.073 4.080 0.718 4.173 2.362

Fig. 5 Effects of dominant height of A. araucana ( HdomAA ) and the difference between the diameters at breast height of A. araucana ( RangeDBHAA ) 
on the height-diameter relationships of A. araucana. The curves were produced from the parameter estimates obtained when fitting Eq. 1. The 
values of the stand variables were replaced using the mean value except for the stand variable of interest, which slowly varied from the minimum 
to the maximum at the same spacing

Table 5 Results of statistical tests comparing the height-diameter relationship of A. araucana and N. pumilio among different sites

Species Reduced model Full model n F‑value L‑value

SSER dfR SSEF dfF

A. araucana 6810 387 6700 378 392 0.690 (< 1.905) 6.384 (< 16.919)

N. pumilio 3590 319 3560 313 323 0.440 (< 2.128) 2.711 (< 12.592)
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suggested that the same reduced model could be used 
for the four sites without developing separate generalized 
height-diameter models for each site. This also indicated 
that it was reasonable to assume that there was no spatial 
correlation at site level. The reduced model (Eq.  1) was 
the final generalized height-diameter model developed 
for A. araucana. There was still heteroskedasticity in this 
model, but this was greatly improved by using the same 
weighting factor wi = 1∕DBHi (Fig. 11 in Appendix).

Nonlinear mixed effects models First, a nonlinear 
mixed-effects model was developed on the basis of the 
simple H–D model SM12 AA. After comparison of alter-
native definitions, the parameter was considered to be 
mixed effect, i.e., having both fixed and random effects. 
The residual diagnostics showed the problem of heter-
oskedasticity again (Fig.  12 (left) in Appendix). Of the 
three alternative variance functions, the power variance 
function with DBH as the base proved to be the most 
effective in terms of improving heteroskedasticity.

Similarly, the generalized H–D model (Eq. 1) was refitted 
using the NLME technique. The parameter was consid-
ered to have a mixed effect after comparison. Again, the 
power variance function was used to improve the heter-
oskedasticity problem of this model (Fig. 13 in Appendix).

By now, all four models developed for A. araucana in 
the fitting database were completed, and the parameter 
estimates and goodness of fit of the models can be found 
in Table  6. The improvement of the generalized H–D 
model over the simple H–D model was significant, but 
the improvement of the generalized NLME H–D model 
over the simple NLME model was negligible. Compar-
ing the two NLME H–D models revealed that for the 
generalized one, the value of the variance components 
associated with the random effects ( �2

u ) dropped sig-
nificantly, but the residual within-stand variance ( �2 ) 
did not drop significantly, suggesting the existence of a 
pattern of variability that cannot be explained by differ-
ences among stands.

Table 6 Estimated parameters and goodness of fit of the H–D models for A. araucana, developed on the basis of the fitting database. 
For estimates for the models fitted to the complete database, see Table 15 in Appendix

Parameter Estimate SE RMSE MAE R2 AIC

Simple H–D model

 a 25.495801 0.847184 4.311 3.282 0.686

 b 2.742643 0.135004

 c 0.026183 0.001789

Simple NLME H–D model

 a 25.803052 0.9713473 4.143 3.120 0.710 2222

 b 2.647948 0.1500307

 c 0.025194 0.0018638

�
2
u

2.0215805 1.4218229

�
2 0.7835037 0.8851574

� 0.3540391

Generalized H–D model

 a0 17.231019 2.140041 4.173 3.090 0.705

 a1 0.330946 0.082163

 b0 0.886679 0.441154

 b1 0.011143 0.002890

 c0 0.026182 0.001806

Generalized NLME H–D model

 a0 17.263367 2.2404455 4.148 3.081 0.709 2209

 a1 0.337622 0.0865606

 b0 0.908298 0.4912982

 b1 0.010706 0.0032225

 c0 0.025530 0.0018646

�
2
u

0.1898353 0.4357009

�
2 0.6266310 0.7916003

� 0.3777712
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Calibration of the NLME models and height predic-
tion The size of calibration designs had impacts on the 
prediction performance with both NLME H–D models 
(Table  7, Table  13  in Appendix). The ONLS fit of the 
generalized H–D model did not converge in both stands 
of the validation database.

The values of both MAPE and MSPE indicated an increas-
ing prediction performance of the simple NLME H–D 
model as the number of sample trees increased. The value 
of MPE illustrated that the calibrated model produced 
an overall underprediction of height at less than 4 sam-
ple trees and an overall overprediction of height starting 

Table 7 Prediction bias (%) of the NLME H–D models of A. araucana in stand 2 and stand 12, respectively

Bold, statistics of selected models

Alternatives Simple NLME model Generalized NLME model

Stand Bias (%) Stand Bias (%) Stand Bias (%) Stand Bias (%)

Only diameters/only diameters and stand vari-
ables are measured

2 21.558 12 2.470 2 7.104 12 2.417

 + 1 height random tree 20.296 2.323 7.081 2.400
 + 2 height random trees 19.504 2.277 7.010 2.456

 + 3 height random trees 18.531 2.246 6.958 2.323

 + 4 height random trees 17.723 2.057 6.988 2.357

 + 5 height random trees 17.088 2.031 6.875 2.385

 + 6 height random trees 16.507 1.955 6.909 2.284

 + 7 height random trees 15.948 1.928 6.846 2.378

 + 8 height random trees 15.169 1.826 6.805 2.376

Individual fit to data from each stand (ONLS) 0.022  − 0.041

Fig. 6 Example of the calibration of simple NLME model with five sample trees and generalized NLME model with one sample tree in stands 2 
and 12 compared to the fixed effects and ONLS prediction with simple H–D model and generalized H–D model of A. araucana. The ONLS fits of 
generalized H–D model did not converge in either stand. Therefore, the generalized NLME model was likewise compared with the ONLS prediction 
of the simple H–D model
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with a calibration design of 5 sample trees. The predic-
tion bias (%) of the simple NLME H–D model under dif-
ferent calibration designs were calculated separately for 
the two validating stands (Table 7). There was a clear dif-
ference in the prediction bias (%) in the two stands, with 
significantly better prediction performance in stand 12 
than in stand 2. Moreover, the prediction performance 
of the model increased in each stand as the number of 
trees sampled increased. Therefore, considering the cost 
of sampling and, to facilitate comparisons, the calibration 
results of the simple NLME H–D model of N. pumilio 
(see results of Sect. Nothofagus pumilio (Poepp. & Endl.) 
Krasser below), five trees were selected as the calibration 
design for the simple NLME H–D model.

The value of the MPE derived from the calibration of 
the generalized NLME H–D model showed fluctuations 
(Table 13 in Appendix). The other two statistics both got 
smaller as the number of sample trees increased. The pre-
diction bias (%) in each stand showed similar results to 
those of the simple NLME model (Table 7). For stand 12, 
the prediction bias (%) of the simple NLME model could 
be even smaller than the prediction bias (%) of the gen-
eralized NLME model. Considering the cost of sampling 
and the calibration results of the generalized NLME H–D 
model of N. pumilio, one tree was selected as the calibra-
tion design for the generalized NLME H–D model.

An example was performed for each of the two models in 
each of the two validating stands (Fig. 6). As can be seen from 
this example, the curves for the fixed-effects response pattern 
and the calibrated response pattern were close, but both were 
different from the curves obtained from the ONLS.

3.2.2  Nothofagus pumilio (Poepp. & Endl.) Krasser

Simple model selection The two-parameter SM1 (Näs-
lund) with the lowest MAE, RMSE, and RMSE (CV) and 
the highest R2 among the alternative models where PRSE 
did not show excessive uncertainty in the parameter 
estimates was finally chosen as the simple model for N. 
pumilio (Table 8). The residual diagnostics showed heter-
oskedasticity (Fig. 14a in Appendix), and the most effec-
tive improvement in heteroskedasticity was observed 
from the residual plots when k = 1 (Fig. 14c in Appendix). 
Therefore k = 1 was followed in this study.

Studentized residuals can be used to identify outliers, 
which are defined as points that are far from other observa-
tions in one-, two- or n-dimensional space (Zwanzig et al. 
2020). Three sample trees with studentized residual values 
larger than 4 were considered as outliers and were finally 

excluded by the subsequent model development process, 
following the guidelines for removing “influential observa-
tions” that were found to have too much impact on model 
development and parameterization (Zwanzig et al. 2020).

Inclusion of stand variables The comparison of the three dif-
ferent approaches to construct generalized models revealed 
that the third “exhaustive” approach is also preferred for N. 
pumilio. The choice of stand variables by the first approach 
caused problems of collinearity in the refitted model. The 
second approach selected stand variables that improved the 
goodness of fit of the models and did not lead to collinearity 
problems, but the third approach produced a similar good-
ness of fit with the inclusion of fewer stand variables.

This “exhaustive” approach was processed as described 
before for A. araucana. The stand variable or combination 
of stand variables that improved the model fit the most was 
included in the simple model by parameters, and then, these 
alternative generalized H–D models were refitted in the fit-
ting database (Table 9). NlogNP was the logarithmic form of 
the stems number of N. pumilio. The reason for using loga-
rithms is that NNP did not conform to a normal distribu-
tion and was converted to a logarithmic form that conforms 
to a normal distribution for possible subsequent studies.

The H–D model developed for N. pumilio in this study, 
after taking into account model complexity, model 

Table 8 N. pumilio simple model selection results. For formulae 
of models SM1-SM16, see Table 12. Prediction statistic refers to 
the cross-validation (CV)-based prediction accuracy

Bold, selected model. Italic, models with PRSE > 25%

Model Uncertainty of 
the parameter 
estimates

Goodness‑of‑fit 
statistics

Prediction 
statistic

PRSE (%) MAE RMSE R2 RMSE (CV)

SM1 NP 7.01 2.812 3.613 0.625 3.608
SM2 NP 6.54 2.821 3.634 0.621 3.631

SM3 NP 6.60 2.823 3.638 0.620 3.636

SM4 NP 8.29 2.828 3.638 0.620 3.636

SM5 NP 11.20 2.966 3.714 0.604 3.706

SM6 NP 12.10 2.843 3.62 0.624 3.614

SM7 NP 6.49 2.82 3.63 0.622 3.627

SM8 NP 88.39 2.819 3.611 0.626 3.613

SM9 NP 15.21 2.908 3.729 0.601 3.736

SM10 NP 25.14 2.846 3.635 0.621 3.640

SM11 NP 25.02 2.849 3.632 0.621 3.637

SM12 NP 11.78 2.871 3.686 0.610 3.691

SM13 NP 87.02 2.828 3.612 0.626 3.615

SM14 NP 27.89 2.822 3.605 0.627 3.608

SM15 NP 53.16 2.812 3.614 0.625 3.617

SM16 NP 38.49 2.825 3.616 0.625 3.620
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performance, and biological interpretation of the stand 
variables, is as follows:

where Hij and DBHij are the height and diameter at breast 
height of j th tree in i th stand, DBHmaxi is the maximum 
DBH in the i th stand, and Dqi is quadratic mean DBH 
in the i th stand, both not related to tree species, and 
NlogNPi is the log-transformed forms of trees per hectare 
of N. pumilio in the i th stand.

The effects of these three stand variables on the height-
diameter relationship were simulated (Fig. 7). The effect 
of Dq on the height-diameter relationship was the most 
pronounced, followed by NNP and DBHmax . As Dq 
increased, the height decreased, and this effect was more 
pronounced for thicker trees than for thinner trees. Simi-
larly, height decreased as NNP increased, and this effect 
was substantial for heights in stands with 10–310 N. 
pumilio trees per hectare while slowly decreasing as the 
number of N. pumilio trees in the stand got higher again. 
Conversely, height increased with higher DBHmax , and 
this effect was greatest for tree heights with DBH around 
50 cm in the stand.

Comparison of H–D models among different sites Equa-
tion 3 was used as the reduced model, and the full model 
was extended by the indicator variable method. Both 
the F-test and the Lakkis-Jones test showed nonsignifi-
cant results (Table  5). The reduced model (Eq.  3) was 
therefore accepted as the generalized H–D model for N. 
pumilio. The weighting factor wi = 1∕DBHi also needed 
to be added to improve the heteroskedasticity problem of 
the model (Fig. 15 in Appendix).

(3)Hij = 1.3 +
DBH2

ij

(

a0 + a1 × DBHmaxi +
(

b1 × Dqi + b2 × NlogNPi

)

× DBHij

)2
+ �ij

Nonlinear mixed-effects models The parameter a of the 
simple H–D model and the parameter a0 of the general-

ized H–D model were considered to be mixed effect after 
comparison. The same power variance function was used 
to improve the heteroskedasticity problem of both the 
simple and generalized NLME H–D models (Figs. 16 and 
17 in Appendix).

By now, all four models developed for N. pumilio in the 
fitting database were completed. The parameter esti-
mates and goodness of fit of the models can be found in 
Table  10. The RMSE decreased from the simple to the 
more complex models, but the overall differences were 
marginal. The value of the components associated with 
the random effects ( �2

u ) was very similar to zero in the 
simple NLME H–D model and could be seen as zero in 
the generalized NLME H–D model. The residual within-
stand variance ( �2 ) was even getting higher. This sug-
gested that the variability in the height-diameter relation-
ship in the fitting database of N. pumilio was influenced 
almost not by differences among stands but rather by dif-
ferences within stands, i.e., between plots.

Calibration of the NLME models and height predic-
tion Different calibration designs also had impacts on 
the prediction performance with both NLME H–D mod-
els of N. pumilio (Table 11, Table 14 in Appendix). And 
the generalized H–D model also failed to converge in the 
fitting to both stands of the validating database. It was 
worth noting that the generalized NLME model showed 
worse prediction accuracy than the simple NLME model. 
This was also illustrated by their prediction bias (%) in 

Table 9 Results from the inclusion of stand variables for SM1 NP

Total number of 
parameters

Expressions for parameters Goodness of fit Prediction statistic Max. VIF

MAE RMSE R2 RMSE (CV)

2 a = a0
b = b0

2.702 3.391 0.666 3.406

3 a = a0 + a1 × DBHmax

b = b0

2.682 3.376 0.668 3.397

4 a = a0 + a1 × Dq + a2 × VardNP
b = b0

2.639 3.357 0.672 3.406 3.511

5 a = a0 + a1 × DBHmax

b = b0 + b1 × Dq + b2 × NlogNP

2.627 3.333 0.677 3.373 6.841

6 a = a0 + a1 × RangeHDNP

b = b0 + b1 × Dq + b2 × RangeDBHNP + b3 × NlogNP
2.604 3.327 0.678 3.377 8.135
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Fig. 7 Effects of maximum DBH ( DBHmax ), quadratic mean DBH ( Dq ), and number of N. pumilio per ha ( NNP ) on the height-diameter relationships 
of N. pumilio. The curves were produced from the parameter estimates obtained when fitting Eq. 3. The values of the stand variables were replaced 
using the mean value except for the stand variable of interest, which slowly varied from the minimum to the maximum at the same spacing
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stands 2 and 12 (Table 11). It was reasonable to select five 
sample trees for the simple NLME model and one sample 
tree for the generalized NLME model for calibration.

To determine the prediction performance of the NLME 
models calibrated by the selected calibration design, 
an example was also performed for each of the two 
models in each of the two validating stands (Fig.  8). 

Unfortunately, in these randomly selected examples, the a 
priori height data did not result in a significant improve-
ment in the height predictions for either model.

Results of model development Except for the gen-
eralized NLME H–D model, which had a large bias 
(bias > 20%) in prediction of the tree height of N. pumilio 
in stand 12, the prediction bias largely fell within ±20% , 

Table 10 Estimated parameters and goodness of fit of the H–D models for N. pumilio, developed on the basis of the fitting database. 
For estimates for the models fitted to the complete database, see Table 16 in Appendix

Parameter Estimate SE RMSE MAE R2 AIC

Simple H–D model

 a 2.93947 0.14203 3.392 2.701 0.665

 b 0.20149 0.00344

Simple NLME model

 a 2.9061143 0.18626177 3.344 2.645 0.675 1694

 b 0.2022838 0.00342757

�
2
u

0.05626726 0.2372072

�
2 1.24739206 1.1168671

� 0.2822094

Generalized H–D model

 a0 5.542 0.6898 3.342 2.625 0.675

 a1  − 0.01371 0.003524

 b1 0.001803 0.00008081

 b2 0.02898 0.002556

Generalized NLME H–D model

 a0 5.485194 0.7253538 3.338 2.622 0.676 1688

 a1  − 0.013088 0.0036392

 b1 0.001771 0.0000727

 b2 0.029397 0.0022909

�
2
u

1.825351e-09 4.272413e-05

�
2 1.282654 1.132543e + 00

� 0.2767384

Table 11 Prediction bias (%) of the simple NLME H–D model of N. pumilio in stand 2 and stand 12, respectively

Bold, statistics of selected models

Alternatives Simple NLME model Generalized NLME model

Stand Bias (%) Stand Bias (%) Stand Bias (%) Stand Bias (%)

Only diameters/only diameters and stand vari-
ables are measured

2  − 6.282 12  − 16.438 2  − 9.184 12  − 36.010

 + 1 height random tree  − 6.176  − 16.213  − 9.139  − 36.005

 + 2 height random trees  − 6.179  − 15.886  − 9.214  − 36.010

 + 3 height random trees  − 6.232  − 15.656  − 9.206  − 36.119

 + 4 height random trees  − 6.256  − 15.551  − 9.214  − 36.066

 + 5 height random trees  − 5.805  − 15.406  − 9.078  − 36.083

 + 6 height random trees  − 6.052  − 15.049  − 9.323  − 36.057

 + 7 height random trees  − 5.969  − 14.765  − 9.318  − 36.210

 + 8 height random trees  − 5.967  − 14.736  − 9.302  − 36.187

Individual fit to data from each stand (ONLS) 0.148 0.018
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indicating that the calibrated models performed well 
(Sharma et al. 2019) in the validating database. Thus, all 
models were fitted again in the complete database (fit-
ting plus validating), and the resulting model parameter 
estimates and variance components (see Table  15 and 
Table 16 in Appendix) can be used to predict tree height 
for A. araucana and N. pumilio in South-Central Chile. 
The most recommended of these are both simple NLME 
H–D models.

4  Discussion
This study investigated the effect of different anthropo-
genic disturbance levels on forest structure and developed 
suitable H–D models for predicting the height of the two 
tree species A. araucana and N. pumilio in mixed stands 
in South-Central Chile. As a result of the presented work-
flow for the development of height-diameter models, a 
total of four H–D models were developed for each of the 
two tree species. These structurally and technically dif-
ferent models vary in their requirements for model input 

and quality of model output, which are explained and 
compared in more detail in the following section.

4.1  Forest structure under varying levels of anthropogenic 
disturbance

The cluster analysis of forest structural characteris-
tics revealed that stands with a medium to high level of 
anthropogenic disturbance were more similar to each 
other than stands with no to low impact. This indicates 
that anthropogenic disturbances have a strong influence 
on stand characteristics, but when this influence is small 
or absent, the effects of natural variation, specific site 
conditions, or history appear to allow greater variation in 
forest structural characteristics between stands. The vari-
ation between plots of the same stand, however, is greater 
for stands that are more heavily impacted by anthropo-
genic disturbance, as it has also been shown by canopy 
scope measurements in these stands, revealing a canopy 
cover of 87% for stands with almost no anthropogenic dis-
turbance, of 58% for low and 42% for the medium as well 
as the high level (Kutchartt et al. 2022). The latter stands 

Fig. 8 Example of the calibration of simple NLME model with five sample trees and generalized NLME model with one sample tree in stands 2 
and 12 compared to the fixed effects and ONLS prediction with simple H–D model and generalized H–D model of N. pumilio. The ONLS fits of 
generalized H–D model did not converge in either stand. Therefore, the generalized NLME model was likewise compared with the ONLS prediction 
of the simple H–D model
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show signs of forest degradation, known in South-Central 
Chile from unsustainable fuelwood use, grazing, and cut-
ting of the most viable trees of commercially valuable spe-
cies (Donoso et al. 2022). Various silvicultural techniques 
exist to rehabilitate such stands, including those aimed at 
supporting regeneration processes when systems are in a 
stage of arrested succession (Donoso et al. 2022).

On the other hand, low levels of anthropogenic dis-
turbance may increase forest structural diversity in ways 
that are reported to be associated with increases in for-
est productivity, although results for this relationship 
are quite mixed (Dănescu et al. 2016). For example, thin-
ning is known to be a key silvicultural intervention to 
improve growth and quality of secondary forests domi-
nated by Nothofagus (Donoso et al. 2022). This may unin-
tentionally apply here to stands with low anthropogenic 
disturbance.

As forest structure can change significantly at small 
scales due to undocumented human actions rather than 
to large-scale environmental factors, model predictions 
for dependent tree-level properties such as the H–D rela-
tionship should ideally be based on local optimizations, 
i.e., calibrated models.

4.2  Model selection
To select the most appropriate function to predict tree 
height, 16 nonlinear H–D models that have been fre-
quently used in the past were compared. These included 
seven two-parameter models and nine three-param-
eter models. Although convergence is considered one 
of the challenges of fitting 3-parameter H–D models 
(Mehtätalo et al. 2015; Ogana 2021), the nine alternative 
3-parameter models converged, but their certainty and 
identifiability for parameter estimation were less than 
satisfactory (PRSE > 25%). Only the parameter estimates 
for SM9 (Logistic) and SM12 (Gompertz) were certain 
and identifiable. The seven two-parameter models did 
not suffer from this problem. Except for SM5 (Power), 
their goodness of fit was in fact very similar to that of the 
three-parameter models.

The simple H–D model chosen for A. araucana was 
SM12 (Gompertz), a model whose suitability in describ-
ing the height-diameter relationship has been shown 
in other studies (e.g., Özcelík et  al. 2014, Subedi et  al. 
2018). However, in the study of Zhang (1997), Gompertz 
was found to underestimate the height of larger trees 
(BHD > 100 cm). This problem was also observed in this 
work. All four models for A. araucana underestimated 
the tree height of large trees with a DBH > 200  cm to 
varying degrees. The simple H–D model chosen for N. 
pumilio was SM1 (Näslund), which also provided a sat-
isfactory fit to the majority of the 28 datasets used by 
Mehtätalo et  al. (2015). Our model selection approach 

demonstrated that combining the PRSE for assessing 
parameter uncertainty and the cross-validation-based 
RMSE for the accuracy in predicting new data facilitates 
the identification of accurate and robust models. Many of 
the height-diameter equations, however, represent very 
similar functions that are likely to have negligible differ-
ences for these and other criteria, as seen here.

4.3  Model improvement
The weighted least squares method that used 
wi = 1∕DBHi as a weighting factor effectively improved 
the heteroskedasticity problem that occured in the resid-
ual diagnostics of both simple models. This can reduce the 
risk of bias in parameter estimation, but may not substan-
tially improve model performance (Cormier et al. 1992).

One of the most key challenges in developing a general-
ized H–D model is the selection of additional interpretive 
stand variables (Raptis et al. 2021). A large range of alter-
native stand variables involving as well as not involving 
tree species were prepared here. These alternative stand 
variables described stand structure, density, species com-
petition in mixed stands, and other important factors 
that could help modeling height-diameter relationships.

For A. araucana, HdomAA was used as an addi-
tional predictor associated with the asymptote coeffi-
cient, which was consistent with many previous studies 
(e.g., Gómez-García et  al. 2015; Raptis et  al. 2021). The 
asymptotic development of the H–D curve is one of the 
important elements in characterizing the development 
of the H–D relationship over time, i.e., the asymptotic 
maximum of the H–D curve increases as a function 
of age (Eerikäinen 2003). There was a high correlation 
between age and dominant height, and the inclusion of 
dominant height in the model also implicitly allowed for 
age (Dorado et  al. 2006). Moreover, although dominant 
height was reduced to the average height of the three 
thickest trees in this study, it was still a measure of the 
maximum height potential of the stand, describing the 
effect of stand quality on H–D relationship, as reported 
before in other studies (Calama and Montero 2004; 
Kershaw et  al. 2016). All other factors being equal, tree 
height increased with increasing HdomAA , and its effect 
on the model was greater than that of the other included 
stand variables. The RangeDBHAA was included in the 
simple model as an additional predictor with param-
eter b , which defines the displacement along the x-axis. 
According to this, the height of small trees is predicted to 
be larger for a given DBH, when RangeDBHAA is lower. 
This reflects that height growth is typically increased by 
increased competition in even-aged or even-sized stands. 
When, on the other hand, RangeDBHAA is larger, small 
trees may have a lower stress level and tend to exhibit 
their usual allometric response. The range shows the 
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allometric corridor for the H–D ratio (Pretzsch 2010), 
i.e., how flexible A. araucana can respond to variable 
environmental conditions under the influence of different 
levels of anthropogenic disturbance.

For N. pumilio, a total of three stand variables were 
included: DBHmax , Dq , and NlogNP , two of which were 
related to DBH, representing the maximum and quadratic 
mean of DBH in the stand, respectively, and did not relate 
to tree species. In particular, differences in Dq are affecting 
height predictions, with larger height predicted in stands 
with lower Dq . The effect of the density of N. pumilio in 
the stand was more heterogeneous, with a stronger posi-
tive impact on tree height in the range of very low densi-
ties. Considering that height growth is rather stimulated 
by competition and not vice versa, this is counter-intuitive, 
suggesting that the density of N. pumilio reflects and com-
bines the effect of other stand characteristics, all of which 
are strongly correlated with this variable.

For both tree species, the analysis of the site-based 
H–D models showed that it was not reasonable to 
develop separate models for each site, and that there 
were no significant differences in the main height growth 
patterns between the four sites.

The implementation of mixed effects for both the sim-
ple and the generalized H–D models improved the good-
ness of fit of the corresponding models. It is worth noting 
that although random effects were defined at the stand 
level in this study, the mixed-effects approach allows for 
random effects to be defined at different levels depend-
ing on the purpose of the study (Bronisz and Mehtätalo 
2020), for example, also at the plot level. This was not 
implemented, as the plots did not have an appropriate 
sample size.

The NLME H–D models can provide two types of 
height predictions for new stands not included in the 
fitting database, a fixed-effects response pattern and a 
calibrated response pattern. The fixed-effects response 
pattern of both simple and generalized NLME models 
presented the lowest prediction accuracy. The gener-
alized NLME model of A. araucana outperformed its 
simple form, a trend similar to that reported by Raptis 
et  al. (2021), who compared the fixed-effects response 
pattern of both simple and generalized NLME mod-
els in even-aged black pine (Pinus nigra Arn.) natural 
stands located in Olympus National Park in Greece. 
However, the two models of N. pumilio gave opposite 
results. This was because the simple NLME model for 
N. pumilio showed very low among-stand variance and 
higher within-stand variance in comparison. This may 
suggest that the variability in the H–D relationship 
is not due to differences among stands but between 
plots, particularly present at high and moderate levels 
of anthropogenic disturbance, as discussed above. The 

generalized NLME model not only accentuated this 
variability among stands by including stand variables 
but also amplified this variability by the random effects 
defined at the stand level.

4.4  Model calibration
A calibrated response pattern requires the measurement 
of heights in the new stands. As the height measure-
ments in our validating database were also a randomly 
selected sample of stands, we only compared the effect 
of the different number of trees with random meas-
urements on prediction accuracy. It is clear from our 
results that as the number of trees measured increased, 
the mixed-effects model predicted height with increas-
ing accuracy, in line with the results of many studies 
(e.g., Dorado et al. 2006). We have chosen a calibration 
design of 5 random trees for the simple NLME models 
and 1 random tree for the generalized NLME models, 
which is a combination considering inventory costs and 
prediction accuracy. However, the number of sample 
trees to be measured also needs to consider the struc-
ture of the new stand. For stands with a homogeneous 
structure, using a single tree height measurement in the 
calibration provides high prediction accuracy (Trincado 
et al. 2007), while for multilayered stands, using a height 
measurement of at least four trees can result in much 
lower prediction error (Sharma et al. 2019). In general, 
the calibration designs for the different tree species 
given in the different studies mostly have thresholds 
between 2 and 5 sampled trees (Ogana 2021). This is 
because the prediction accuracy achieved by increasing 
the number of sampled trees requires additional inven-
tory costs. It is also worth noting that the accuracy of 
the calibrated response pattern depends not only on 
the number of trees sampled but also on their diameter 
classes (Calama and Montero 2004). Thus, limited by 
the available database, all that can be considered is the 
number of randomly selected sample trees, and such a 
calibration design is likely to be unsatisfactory. In future 
studies, we can try to explore the best calibration design 
by selecting some of the thickest, some of the thinnest, 
and some of the trees close to the mean DBH in the new 
sample stand and measuring their heights.

5  Conclusion
In conclusion, it is recommended to use the calibrated 
simple NLME H–D model for A. araucana height predic-
tion. The reason is that considering the inclusion of the 
stand variable HdomAA in the generalized H–D model, 
three of the thickest trees need to be measured for the 
calculation. In contrast, the tree heights of five randomly 
selected trees result in more accurate predictions for the 
simple NLME model, and in field work, sample trees 
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can be selected for measurements that are not visually 
impaired, reducing the difficulty of measuring tree height 
and omitting increasing inventory costs compared to 
measuring the heights of the three thickest trees.

For N. pumilio, the use of a calibrated simple NLME 
model is also recommended, but further research is 
required to address the sources of the variability in the 
height-diameter relationship within each stand, as this 
will be useful in improving the predictive performance of 
the model.

The presented methodology of determining the opti-
mal tree height model and calibration design has the 
potential to inspire future studies aiming to develop tree 
height models that account for stand variables and mixed 
effects and that are intended to be calibrated for new 
stands. This is particularly important given the variable 
and complex effects of anthropogenic disturbances on 
stand structure, as observed here for Araucaria-Nothof-
agus forests.

Appendices
Detailed workflow for height‑diameter model 
development
General principle of height‑diameter model development
The definition of appropriate height-diameter mod-
els can be a challenging task. Here, we have taken up 

recommendations by Tischer et al. (2020). We begin with 
an exploration of simple models and continue by examin-
ing model extensions that account for covariates and ran-
dom effects. An R script for this workflow is presented by 
Zhou & Zwanzig (2022).

Simple models selection
The selection of H–D models requires consideration of 
several characteristics such as: desirable mathematical 
properties (e.g. number of parameters), possible biologi-
cal interpretations of the parameters and satisfactory pre-
dictions of the height-diameter relationships (Yuancai and 
Parresol 2001; Krisnawati et  al. 2010). To determine the 
most appropriate simple model for A. araucana and N. 
pumilio, 16 nonlinear models that have been used in many 
studies (Mehtätalo et al. 2015) were chosen as candidates 
(Table 12).They can all be written in the following general 
form (Adame et al. 2008):

where Hi is the i-th observation of tree height (m), DBHi 
is the i-th observation of diameter at breast height (cm), 
� is the vector of parameters to be estimated, �i is the 
random error term and i is the i-th observation with 
i = 1,2,… , n.

(4)Hi = f
(

DBHi,�
)

+ �i

Table 12 List of 16 simple models tested. Models were classified into 2-parameter and 3-parameter functions, following Mehtätalo 
et al. (2015), which provides a full list of references for the model origins

DBH diameter at breast height (cm), H total tree height (m), a, b, c model parameters

Model Name Formulae

2‑parameter functions
 SM1 Näslund H = 1.3 +

DBH2

(aDBH+b)2

 SM2 Curtis H = 1.3 +
aDBH

(1+DBH)b

 SM3 Schumacher H = 1.3 + aexp
(

−bDBH−1
)

 SM4 Meyer H = 1.3 + a(1 − exp(−bDBH))

 SM5 Power H = 1.3 + aDBHb

 SM6 Michaelis–Menten H = 1.3 +
aDBH

b+DBH

 SM7 Wykoff H = 1.3 + exp
(

a − b(DBH + 1)−1
)

3‑parameter functions
 SM8 Prodan H = 1.3 +

DBH2

aDBH2+bDBH+c

 SM9 Logistic H = 1.3 +
a

1+bexp(−cDBH)

 SM10 Chapman-Richards H = 1.3 + a(1 − exp(−bDBH))c

 SM11 Weibull H = 1.3 + a
(

1 − exp
(

−bDBHc
))

 SM12 Gompertz H = 1.3 + aexp(−bexp(−cDBH))

 SM13 Sibbesen H = 1.3 + aDBHbDBH−c

 SM14 Korf H = 1.3 + aexp
(

−bDBH−c
)

 SM15 Ratkowsky H = 1.3 + aexp
(

−b

DBH+c

)

 SM16 Hossfeld IV H = 1.3 +
a

1+
1

bDBHc
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Among the 16 candidate models are seven nonlinear 
models with two parameters and nine nonlinear mod-
els with three parameters. Nonlinear models containing 
four parameters were not involved in this study to pre-
vent over-parameterization and over-complication of 
the models. The constant height at breast height (1.3) is 
included in the right side of all H–D models, thus avoid-
ing negative height estimates for small trees (Krisnawati 
et al. 2010).

The performance of the different models was assessed 
with four types of criteria: (1) evaluation of uncertainty 
and identifiability of the parameter estimates with per-
centage relative standard error (PRSE); (2) assessment 
of the goodness-of-fit by the root mean square error 
(RMSE), mean absolute error (MAE) and the coefficient 
of determination  (R2); (3) evaluation of the prediction 
ability of these simple models on fitting database based on 
the mean RMSE of the tenfold Cross-Validation repeated 
10 times (Ciceu et al. 2020), and (4) visual analysis based 
on studentized residuals plots (Huang et al. 1992).

The expressions of these statistics are summarized as 
follows:

where P is the parameter estimate, SE(P) is the parameter 
standard error, Hi and Ĥi are the observed and predicted 
values of the height of tree i , H  is the average value of the 
height and n is the number of trees.

In general, lower RMSE and MAE values and higher 
 R2 values indicated that the model was providing a bet-
ter goodness-of-fit, whereas lower PRSE values indicated 
a proper identifiability of the parameter estimates. In 
many practical applications, parameter estimates were 
considered unreliable when PRSE exceed 25 -30%—a 
rule of thumb for PRSE reported by Sileshi (2014). For 
each alternative model, the maximum PRSE value of its 
parameters would be taken as the PRSE value for that 
model and when this value exceeded 25%, the model 
would be rejected.

(5)PRSE = 100 ×
SE(P)

|P|

(6)RMSE =

√

1

n

∑n

i=1

(

Hi − Ĥi

)2

(7)MAE =
∑n

i=1

|

|

|

Hi − Ĥi
|

|

|

n

(8)R2 = 1 −

∑n

i=1

�

Hi − Ĥi

�2

∑n

i=1

�

Hi −H
�2

The nonlinear H–D models were fitted using the nls-
function of the R-package ‘stats’ (R Core Team 2021). A 
set of the initial values of the parameters were obtained 
using the startHDmodel-function of the R-package 
‘lmfor’ (Mehtätalo and Kansanen 2020) in order to avoid 
inappropriate initial value settings from causing the 
model to fail to fit on the fitting database. To ensure that 
each fitted simple model for given height and DBH data 
was globally optimal rather than locally optimal, multi-
ple different sets of initial values were also assumed and 
tested and the Gauss–Newton algorithm that comes with 
the nls-function was used to determine the nonlinear 
least squares estimates of the parameters.

The assumption of nonlinear least squares is that the 
error terms are independent and identically distrib-
uted with zero mean and constant variance (Huang 
et al. 1992). Therefore, after determining the best simple 
model for each species, if the residual diagnostics showed 
heteroskedasticity, it would be improved by weighted 
nonlinear least squares (WLS). According to Huang et al. 
(1992), the weighting factor could be set as:

where the alternative values of k are 0.5, 1, 1.5, 2, 2.5, 3. 
After the simple model with the best fit was identified, 
these weighting factors were tested for further model 
improvement.

Stand variables
In order to study the variability of the relationship 
between tree height and diameter at stand level, a series 
of variables based on the original data available were 
selected as alternative covariates to be added to the sim-
ple model in subsequent step. These 25 variables were 
classified into six main categories, namely tree, stand, 
diameter diversity, density and competition, geographic 
information, and mixed stand (see Table 17 in Appendix).

The stand variables describing the tree level were mean 
DBH (DBHm) and mean tree height (Hm).

The quadratic mean DBH and tree height (Dq and 
Hq), maximum DBH and tree height (DBHmax and Hmax), 
range of DBHs and tree heights (range DBH and range 
H), height of the tree with the largest DBH (HDmax), range 
of heights of the trees with the smallest and the largest 
DBH (range HD), and dominant diameter and tree height 
(DBHdom and Hdom) were used to describe stand level. 
Hdom was reduced to the mean height of the three thick-
est trees in the stand, although a more common defini-
tion in forestry research is to consider dominant height 
as the average height of the 100 thickest trees per hec-
tare (see Tarmu et al. 2020). The simplification made here 

(9)wi =
1

DBHk
i
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was on the one hand because only three trees in some 
stands in the database were measured for height and on 
the other hand the consideration that the inclusion of 
covariates requiring many pre-measured tree heights in 
the model for predicting tree height would significantly 
reduce the applicability of the model. For the reason of 
standardization, the calculation of the dominant diam-
eter has been simplified in the same way.

Diameter diversity was described with the help of the 
Shannon index (Hd), the Gini coefficient (GCd), and the 
coefficient of variation of DBH (Vard). Where the Shan-
non index was originally used to describe species diver-
sity, it was later adapted as an index of diameter diversity 
by replacing the number of species with the number of 
diameter classes of individual trees (Dănescu et al. 2016). 
The Gini coefficient was considered because it not only 
did not require subjective assignment of classes of diam-
eters but also measured heterogeneity (Lexerød and Eid 
2006). To calculate the Gini coefficient, all trees within 
the sampling unit were arranged in ascending order 
of diameter, and the result was between zero and one, 
where the smallest value of zero represented the fact that 
all trees were the same size. The coefficient of variation of 
DBH could help to compare the dispersion of diameters 
in stands with different mean diameters.

Tree growth was often exceptionally sensitive to the dif-
ferences of stand density because the density would affect 
the spatial distribution of the climate within a stand, espe-
cially light and temperature. The most common measures 
of stand density include, but are not limited to, the num-
ber of trees per hectare, basal area per hectare (BA), and 
stand density index, each of which has its advantages and 
disadvantages, and there is no universally applicable meas-
ure of stand density (Von Gadow 2005). For example, the 
number of trees per hectare (N), although very simple and 
straightforward, lacked the second dimension of individual 
size, and it was not suitable for describing stand density 
anymore if the mean size of the population was different 
(Zeide 1995). The stand density index (SDI) was introduced 
by Reineke in 1933 (Reineke 1933) and is now widely used 
in the USA (e.g., Marchi 2019). The theoretical SDI is an 
abstract amount indicating the expected number of trees 
when Dq is 25 cm. When using SDI, the Reineke constant 
(1.605) is often used directly, but its generality has actually 
been questioned (e.g., Williams 1996). The basal area of 
larger trees (BAL), which originally referred to the sum of 
the basal areas of trees larger than the diameter of a given 
tree (Wykoff 1990), was also simplified in this study to the 
sum of the basal areas of the three largest diameter trees in 
the stand. The simplification was since there was not a large 
amount of data available to determine the most reasonable 
reference diameter. BAL was an important explanatory var-
iable in many modeling approaches (e.g., Xie et  al. 2020), 

but species blindness needed to be taken into account when 
using BAL indices in mixed stands (Von Gadow 2005).

Geographic information included altitude (ALT), lati-
tude, and longitude (lat and lng).

Mixed stand was simply considered as the proportion 
of the basal area of each species in relation to the total 
basal area (RBA) and the proportion of the number of 
each species in relation to the total number of trees (RN), 
as the original database did not include information on 
the distance between trees.

Some of the stand variables considered both species 
involved and species uninvolved.

To see if specific quantitative stand-level properties are 
characteristic for the four levels of anthropogenic distur-
bance, a k-means cluster analysis with four predefined 
clusters was conducted on the stand variables involved in 
this study. For this, the “kmeans” function of R-package 
“stats” (R Core Team 2021) was used. The visualization 
of the clustering results used the “fviz_cluster”—func-
tion of R-package “factoextra” (Kassambara and Mundt 
2020), which represents observations in a plot based on 
principal components. The detailed results of the princi-
pal components analysis were obtained using prcomp() 
of the “stats” package (R Core Team 2021).

Inclusion of stand variables in the models
Simple H–D models could be extended upwards to gen-
eralized H–D models by including stand variables, thus 
expressing the variability detected between stands (Adame 
et  al. 2008; Mehtätalo et  al. 2015) and improving model 
fitting and prediction (Sharma et  al. 2019). Three differ-
ent approaches of including stand variables were tested. 
The first two represented a two-stage approach, which was 
introduced by Ferguson and Leech (1978) and was still often 
applied (e.g. Ciceu et  al. 2020). In the first stage, separate 
height-diameter curves were fitted for each stand for both 
approaches. In the second stage, the first approach was to 
progressively add to the simple model the stand variables 
with the highest correlation to the model parameters. The 
second approach was using best subset regression to search 
for the best linear fit for different numbers of stand variables 
for each parameter. The third “exhaustive” approach was 
to explore all possible combinations to find the stand vari-
able or combination of stand variables that gave the largest 
improvement to the goodness-of-fit statistics, while limiting 
the total number of stand variables to be included.

In the first approach, the Pearson correlation coefficient 
was used. Therefore, the calculated stand variables would 
first be checked for the normal distribution, and a sim-
ple arithmetic transformation (log, inverse, and squared, 
Sharma et  al. 2019) would be carried out for the stand 
variables that did not fit a normal distribution. If the trans-
formed stand variables still did not conform to a normal 
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distribution, the Spearman correlation coefficient was 
used as an alternative. RD was not considered in the first 
approach because each tree had a different RD, while the 
other stand variables were the same for all the trees in the 
same stand and the inclusion of RD would over-increase 
the significance of the correlation. The rule for interpreting 
the correlation coefficient referred to Hinkle et al. (2003).

It is important to note that because one of the pur-
poses of developing the height-diameter model is to 
predict tree height, stand variables that required large 
amounts of tree height data for calculation were excluded 
(e.g., Hm). Since most of the stand variables considered 
were calculated based on DBH, the problem of collin-
earity might arise when more than one stand variable is 
included. This problem was assessed by calculating vari-
ance inflation factor (VIF) and considering that, as a rule 
of thumb, a VIF value that exceeds 5 or 10 indicates a 
problematic amount of collinearity (Gareth et al. 2013).

Comparison of H–D models among different sites
Because of the apparent multiple layers of nested rela-
tionships (site-stand-plot) in the database, this spatial 
correlation in the data must be considered when devel-
oping the H–D models. To compare the differences 
between the height-diameter relationships at the four 
sites of our study area, the nonlinear extra sum of squares 
F-test (Bates and Watts 1988; Huang et al. 2000) and the 
test introduced by Lakkis and Jones (Khattree and Naik 
1999) were used. For this purpose, both full and reduced 
models were required. The full model had a different set 
of parameters for each site, while the reduced model 
shared the same set of parameters for all four sites. In this 
study, the reduced model is the H–D model developed 
in the previous step including stand variables. The full 
model would be extended on this by the indicator varia-
ble approach (Bates and Watts 1988), i.e., extending each 
parameter to include an associated parameter as well as 
a dummy variable (e.g., Δ1x1 for La Fusta) to distinguish 
among sites (Adame et al. 2008).

Since there are 4 different sites, 3 dummy variables ( x1 
to x3 ) were needed, which were defined as follows:

– If site = LaFusta, x1 = 1, x2 = 0, x3 = 0

– If site = Conguillio, x1 = 0, x2 = 1, x3 = 0

– If site = Malalcahuello, x1 = 0, x2 = 0, x3 = 1

– If site = ElNaranjo, x1 = 0, x2 = 0, x3 = 0

The equality of full model and reduced model was 
tested by considering the null hypothesis that all asso-
ciated parameters were equal and equal to zero (Huang 
et al. 2000).

The expressions of the F-test and Lakkis-Jones test 
mentioned above are as follows:

where SSER and SSEF are the error sum of squares of the 
reduced model and full model, dfR and dfF are the degrees 
of freedom of the reduced and full model, and n is the 
number of observations.

The null hypothesis was accepted only if both tests 
passed ( F ≤ Fcritical

(

1 − �, dfR − dfF , dfF
)

, � = 0.05 and 
L ≤ Lcritical

(

1 − �, dfR − dfF
)

, � = 0.05 ), i.e., the reduced 
model was applied to all four sites.

Both the reduced model and the full model were fit-
ted with R-function “nls.” The residuals are needed to be 
diagnosed again to check for heteroskedasticity.

Nonlinear mixed‑effects models
The effect of different stands on the height-diameter rela-
tionship was addressed using nonlinear mixed-effects 
models. The general form of the nonlinear mixed-effects 
H–D model can be written as follows (Pinheiro and Bates 
2000):

where M is the number of stands, ni is the number of 
trees in the i th stand, f  is a general, real-valued, differ-
entiable function of a stand-specific parameter vector �ij , 
DBHij is a covariate vector, and �ij is a normally distrib-
uted within-stand error term.

An important characteristic of the nonlinear mixed-
effects models was that their parameters were divided 
into two groups: fixed effects parameters, which showed 
trends in tree heights common to all stands, and random 
effects parameters, which represented differences among 
stands. The parameter vector �ij can therefore be defined 
as follows (Pinheiro and Bates 2006):

where � is a p-dimensional vector of fixed effects, bi is 
a q-dimensional random effects vector associated with 
the i th stand with variance–covariance matrix D , and 
Aij and Bij are the design matrix for fixed and random 
effects.

(10)F =

SSER−SSEF

dfR−dfF

SSEF
dfF

(11)L = 2ln

(

(

SSER

SSEF

)
n

2

)

(12)
Hij = f

(

�ij ,DBHij

)

+ �ij ;i = 1,… ,M;j = 1,… , ni

(13)�ij = Aij� + Bijbi;biN (0,D)
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Taking the example of Fang and Bailey (2001) and 
Dorado et  al. (2006), the development of the mixed-
effects models in this study involved three main steps.

The first step was to determine the parameter effects, 
which was to specify the nature of the parameters of the 
model as fixed and random effects or purely fixed effects. 
Pinheiro and Bates (2006) suggested that, when conver-
gence was feasible, all parameters in the model were first 
considered to including both random and fixed effects. In 
this study, various variants of the mixed-effects models 
formed by all possible combinations of random and fixed 
effects parameters were fitted to the fitting database. 
When different models were fitted to the same database, 
comparisons between models could be either nested 
models or non-nested models. Nested models were com-
pared using a likelihood ratio test (LRT). For non-nested 
models, the LRT test was not available, in which case the 
models were compared using the Akaike information cri-
terion (AIC). A smaller value of AIC indicated a better fit 
of the model to the database.

The second step was to determine the within-stand var-
iance–covariance structure to account for the variability 
between tree heights in the same stand. To achieve this, 
it was important to address both the heteroskedastic-
ity and autocorrelation structure components (Fang and 
Bailey 2001). Residual diagnostics were used to determine 
if there was heteroskedasticity, and if so, one of the three 
common variance functions (power function, exponen-
tial function, and constant plus power function) with the 
greatest reduction in heteroskedasticity would be used to 
resolve this problem. As there were no repeated measure-
ments in the database, it was reasonable to assume that 
there was no temporal correlation between these obser-
vations. Although trees originating from the same stand 
all shared the same environment, trees were randomly 
selected when measuring height, so it was also reason-
able to assume that these observations were not clumped 
in the same stand, i.e., there was no pattern of spatial 
correlation.

Dorado et  al. (2006) considered that the expression for 
the within-stand variance–covariance matrix has the fol-
lowing special structure, when no patterns of temporal or 
spatial correlation among observations are shown in the 
data and only a weighting factor for balancing the error 
variance is considered:

where �2 is a scaling factor for the error dispersion given 
by the value of the residual variance of the model and 
Gi is the diagonal matrix describing the nonconstant 
variance.

(14)Ri = �
2Gi

The third step was to determine the structure of the 
among-stand variance–covariance matrix D , which was 
common to all stands and defined the variability that 
existed among stands. A general D with n parameters has 
the following equation:

where �2

1
 and �2

n are the variance of the first and the n th 
parameters and �1�n and �n�1 are the mutual covariances 
of the first and the n th parameters.

The nonlinear mixed-effects H–D models were fitted using 
function nlme() of package “nlme” (Pinheiro et al. 2021). The 
algorithm used was log-likelihood maximization (ML).

Calibration of the nonlinear mixed‑effects models and height 
prediction
Using the nonlinear mixed-effects models developed, tree 
height can be predicted in stands to which the model has 
not been previously fitted. There are two types of predic-
tion, a fixed effects response pattern, where only diameters 
and the stand variables involved in the model are measured 
in the new stand and a calibrated response pattern, where 
not only diameters and stand variables but also the height 
of a subsample of trees in the new stand are measured 
(Fang and Bailey 2001).

In the first case, the expected value 0 was used for all 
random parameters, and the prediction of the fixed part 
was the standardized generalized height-diameter curve 
(Dorado et  al. 2006). In the second case, the subsample 
of tree heights can be used to predict the random effects 
vector bi for the new stand, using the empirical best unbi-
ased predictor (EBLUP) technique (Vonesh and Chinchilli 
1997), expressed as follows:

where ̂D is the among-stand variance–covariance matrix, 
common for all stands, and estimated in the general fit-
ting of the model, ̂Ri is the within-stand variance–covari-
ance matrix, ̂Zi is the vector of partial derivatives with 
respect to bi , and �̂i is the residual vector given by the dif-
ference between the observed height value and the value 
predicted using the model including only fixed effects. 
The superscript T  is the matrix transpose operator, and 
−1 is the inverse matrix.

For this calibrated response pattern, this study evaluated 
alternatives with different sampling sizes within each stand, 
i.e., a random selection of one to eight sample trees for 

(15)D =

⎡

⎢

⎢

⎣

�
2

1
⋯ �n�1

⋮ ⋱ ⋮

�1�n ⋯ �
2

n

⎤

⎥

⎥

⎦

(16)̂bi =
̂D̂ZT

i

(

̂Ri +
̂Zi
̂D̂ZT

i

)−1

�̂i
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height. Height for other trees in the stand can be predicted 
with the help of the following equation after determining 
the random effects in the new stand:

It is important to note that EBLUP was involved in the 
process of linearizing a nonlinear model using a first-order 
Taylor approximation, and the linearized base point could 
be either 0 or the iterative final value. In forestry, 0 is gen-
erally applied as the linearized base point to predict ran-
dom effects (Eq. 16), so it was preferable to use the same 
base point for linear prediction of the tree height (Eq. 17). 
This was because the accuracy of the prediction is sub-
stantially reduced when the base point of predicted ran-
dom effect differs from the prediction of tree height (Zu 
et al. 2016).

To assess the prediction performance of the developed 
nonlinear mixed-effects models, data included in validat-
ing database were used. The calibrated H–D models were 
applied to the remaining trees in the same stand for which 
height measurements were available. Eight calibration 
design alternatives were evaluated and compared with 
the predictions obtained from ONLS techniques in the 
same stand with selected simple and generalized nonlin-
ear H–D models and with a typical fixed effects response 
pattern.

(17)Hi ≈ f
(

Ai�̂,DBHi

)

+ ̂Zi ×
̂bi

The prediction performance of the models was evalu-
ated using the following statistical measures (Zu et  al. 
2016; Sharma et al. 2019) as follows:

where Hij and Ĥij are observed and predicted values of 
the height of the j th tree in the i th stand, ni is the num-
ber of predicted values for the i th stand, m is the num-
ber of stands involved in the height prediction analysis, 
and Hi is the mean value of measured heights in the i th 
stand.

Random selection of the sample trees was repeated 1000 
times to obtain an average estimate for the final results.

(18)MSPE =
1

∑m

n=1
ni

�m

i=1

�ni

j=1

�

Hij − Ĥij

�2

(19)MPE =
100

∑m

n=1
ni

�m

i=1

�ni

j=1

Hij − Ĥij

Hij

(20)MAPE =
1

∑m

n=1
ni

�m

i=1

�ni

j=1

�

�

�

Hij − Ĥij
�

�

�

Hij

(21)bias(%) =
100ei

Hi

withei =
∑ni

j=1

(

Hij − Ĥij

)

ni

Table 13 Calibration results of NLME H–D models of A. araucana 

Alternatives Simple NLME model Generalized NLME model

MAPE MPE MSPE MAPE MPE MSPE

Only diameters/only diameters and 
stand variables are measured

0.210 2.491 38.376 0.206  − 1.237 25.101

 + 1 height random tree 0.202 1.729 35.400 0.200  − 1.226 24.155
 + 2 height random trees 0.195 1.323 33.219 0.193  − 1.189 23.156

 + 3 height random trees 0.188 0.805 30.908 0.187  − 1.311 22.211

 + 4 height random trees 0.181 0.303 28.814 0.179  − 1.230 21.250

 + 5 height random trees 0.174  − 0.007 27.123 0.173  − 1.258 20.303

 + 6 height random trees 0.168  − 0.392 25.459 0.166  − 1.283 19.333

 + 7 height random trees 0.160  − 0.526 23.815 0.159  − 1.175 18.419

 + 8 height random trees 0.153  − 0.831 21.987 0.152  − 1.117 17.367

Individual fit to data from each stand 
(ONLS)

0.193  − 6.395 17.113

Bold, statistics of selected models
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Table 14 Calibration results of NLME H–D models of N. pumilio. Bold: statistics of selected models

Alternatives Simple NLME model Generalized NLME model

MAPE MPE MSPE MAPE MPE MSPE

Only diameters/only diam-
eters and stand variables are 
measured

0.268  − 16.932 16.134 0.356  − 28.892 28.091

 + 1 height random tree 0.257  − 16.124 15.475 0.343  − 27.789 27.045

 + 2 height random trees 0.247  − 15.345 14.821 0.330  − 26.749 26.012

 + 3 height random trees 0.236  − 14.623 14.168 0.317  − 25.726 25.028

 + 4 height random trees 0.226  − 13.969 13.559 0.304  − 24.631 23.964

 + 5 height random trees 0.215  − 13.052 12.885 0.289  − 23.476 22.863

 + 6 height random trees 0.205  − 12.422 12.251 0.277  − 22.501 21.837

 + 7 height random trees 0.193  − 11.591 11.523 0.265  − 21.494 20.944

 + 8 height random trees 0.184  − 11.059 11.022 0.251  − 20.403 19.845

Individual fit to data from each 
stand (ONLS)

0.204  − 6.344 11.826

Bold, statistics of selected models

Table 15 Estimated parameters and goodness of fit of the H–D models for A. araucana fitted to the complete database

Parameter Estimate SE RMSE MAE R2 RMSE (CV)

Simple H–D model
Hij = 1.3 + a × e−b×e

−c×DBHij
+ �ij

 a 26.867225 0.922861 4.57 3.43 0.68 4.57

 b 2.654334 0.119640

 c 0.024083 0.001615

Simple NLME H–D model
Hij = 1.3 +

(

a + ui
)

× e−b×e
−c×DBHij

+ �ij

u
i
N(0,D)

�i N
[

0, Ri
]

 a 27.593612 1.1309101 4.24 3.20 0.72 4.37

 b 2.506014 0.1331214

 c 0.022559 0.0016667

�
2
u

4.771740 2.184431

�
2 1.292337 1.136810

� 0.3023997

Generalized H–D model
Hij = 1.3 +

(

a0 + a1 × HdomAAi
)

× e−(b0+b1×RangeDBHAAi )×e
−c0×DBHij

+ �ij

 a0 16.250751 1.774237 4.26 3.16 0.72 4.29

 a1 0.398350 0.063317

 b0 1.090395 0.353957

 b1 0.008893 0.002231

 c0 0.024126 0.001587

Generalized NLME H–D model
Hij = 1.3 +

(

a0 + ui + a1 × HdomAAi
)

× e−(b0+b1×RangeDBHAAi )×e
−c0×DBHij

+ �ij

u
i
N(0,D)

�i N
[

0, Ri
]

 a0 16.657915 1.7012540 0 4.25 3.16 0.72 4.29

 a1 0.409165 0.0596687 0

 b0 1.093159 0.3614893 0.0026

 b1 0.008203 0.0023067 0.0004

 c0 0.022477 0.0016121 0

�
2
u

2.35871e-06 0.0015358

�
2 1.23625 1.1118678

� 0.3056402
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Table 16 Estimated parameters and goodness of fit of the H–D models for N. pumilio fitted to the complete database

Parameter Estimate SE RMSE MAE R2 RMSE (CV)

Simple H–D model
Hij = 1.3 +

DBH2
ij

(a+b×DBHij )
2 + �ij

 a 2.827768 0.133800 3.48 2.75 0.63 3.48

 b 0.205948 0.003295

Simple NLME model
Hij = 1.3 +

DBH2
ij

((a+ui )+b×DBHij )
2 + �ij

u
i
N(0,D)

�i N
[

0, Ri
]

 a 2.8369380 0.185100 3.40 2.66 0.64 3.45

 b 0.2061832 0.003319

�
2
u

0.09093102 0.301548

�
2 1.18632864 1.089187

� 0.2925926

Generalized H–D model
Hij = 1.3 +

DBH2
ij

(a0+a1×DBHmaxi+(b1×Dqi+b2×NlogNPi )×DBHij )
2 + �ij

 a0 4.202 6.924e-01 3.60 2.81 0.60 3.61

 a1 -7.122e-03 3.539e-03

 b1 1.860e-03 8.561e-05

 b2 2.923e-02 2.715e-03

Generalized NLME H–D model
Hij = 1.3 +

DBH2

ij

(a0+ui+a1×DBHmaxi+(b1×Dqi+b2×NlogNPi )×DBHij )
2 + �ij

u
i
N(0,D)

�i N
[

0, Ri
]

 a0 2.935442 1.3530663 3.42 2.66 0.64 3.49

 a1 0.000124 0.0069137

 b1 0.001779 0.0001023

 b2 0.031011 0.0030591

�
2
u

0.190482 0.4364421

�
2 1.151112 1.0728989

� 0.297914
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Table 17 Summary table of all stand variables involved (modified based on Ciceu et al. 2020; Dănescu et al. 2016)

Category No Symbol Description Formula Symbols and letters 
description

Tree 1 DBHm Mean value of the DBH(cm)
∑n

j=1
DBHj

n

DBHj is the diameter of 
tree j at breast height (cm)
Hj is the tree height of tree 
j (m)
n is the number of trees 
measured
HD is the height of the tree 
with diameter (D) at breast 
height (m)

2 Hm Mean value of the tree height 
(m)

∑n

j=1
Hj

n

Stand 3 Dq Quadratic mean DBH (cm)
�

∑n

j=1

DBH2

j

n

4 Hq Quadratic mean tree height 
(m)

�

∑n

j=1

H2
j

n

5 DBHmax Maximum DBH (thickest tree) Max(DBH)

6 Hmax Maximum tree height (high-
est tree)

Max(H)

7 Range DBH Range of the DBH Max(DBH) −Min(DBH)

8 Range H Range of the tree height Max(H) −Min(H)

9 Range HD Difference between the tree 
height of the thickest tree 
and the thinnest tree

Max
(

HD

)

−Min
(

HD

)

10 HDmax Tree height of the thickest 
tree

Max
(

HD

)

11 DBHdom Dominant DBH Average DBH of the 3 
thickest trees in each 
stand

12 Hdom Dominant tree height Average tree height of 
the 3 thickest trees in 
each stand

DBH diversity 13 Hd Shannon index −
∑Nd

j=1

�

Pj × ln
�

Pj
��

Nd is the number of 
diameter classes at breast 
height
Pj is the proportion of the 
basal area of the j-th diam-
eter class at breast height

14 GCd Gini coefficient
∑n

i=1
(2×i−n−1)×BAi

∑n

i=1
(n−1)×BAi

BAi is the basal area for the 
tree with rank i
i  is the rank of a tree in 
ascending order from 
1, ..., n
n is the total number of 
trees

15 Vard Coefficient of variation of 
DBH

100 ×
sdDBH

DBH

sdDBH is the SD of the DBH
DBH is the arithmetic 
mean diameter at breast 
height (cm)
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Category No Symbol Description Formula Symbols and letters 
description

Density and competition 16 BA Basal area per hectare 
 (m2ha−1)

�

40000

�

∑n

j=1
DBH2

j

�

S

S is the stand area (ha)
DBHj is the diameter of 
tree j (cm) at breast height

17 BAL Basal area of the largest trees 
 (m2ha−1)

Sum of the basal areas 
of the 3 thickest trees in 
each stand

18 N The number of trees per 
hectare  (Nha−1)

19 SDI Stand density index of 
uneven aged stands

∑n

j=1

�

Nj

�

DBHj

25

�1.605
�

Nj is the number of trees 
in the diameter class j at 
breast height
DBHj is the middle of j 
diameter class at breast 
height (cm)
n is the total number of 
diameter classes at breast 
height

20 RD The ratio of each individual 
DBH to Dq

DBHj

Dq

Geographic information 21 ALT Altitude (m)

22 lat Latitude

23 lng Longitude

Mixed stand 24 RBA Proportion of the basal area 
of each species in relation to 
the total basal area

BAj

BAi

BAj is the basal area of tree 
species j in stand i
BAi is the total basal area 
in stand i

25 RN Proportion of the number of 
each species in relation to the 
total number of trees

Nj

Ni

Nj is the number of tree 
species j in stand i
Ni is the total number of 
trees in stand i
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Fig. 9 Plot of stand variables in each stand that contribute significantly to clustering
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Fig. 10 The plot of studentized residuals against the predicted height for A. araucana. The studentized residuals were obtained by fitting model SM12 
AA (a) without weighting, with weight wi = 1∕DBHk

i  , where (b) k = 0.5, (c) k = 1, (d) k = 1.5, (e) k = 2, (f) k = 2.5, and (g) k = 3

Fig. 11 The plot of studentized residuals against the predicted height for A. araucana. The studentized residuals were obtained by fitting model Eq. 1 
without weighting (left) and with weighting factor wi = 1∕DBHi (right)
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Fig. 12 The plot of studentized residuals against the predicted height for A. araucana. The studentized residuals were obtained by fitting the simple 
NLME H–D model for AA without weighting (left) and with power variance function (right)

Fig. 13 The plot of studentized residuals against the predicted height for A. araucana. The studentized residuals were obtained by fitting the 
generalized NLME H–D model for AA without weighting (left) and with power variance function (right)
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Fig. 14 The plot of studentized residuals against the predicted height for N. pumilio. The studentized residuals were obtained by fitting model SM1 NP 
(a) without weighting, with weight wi = 1∕DBHk

i  , where (b) k = 0.5, (c) k = 1, (d) k = 1.5, (e) k = 2, (f) k = 2.5, and (g) k = 3
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Fig. 15 The plot of studentized residuals against the predicted height for N. pumilio. The studentized residuals were obtained by fitting model Eq. 3 
without weighting (left) and with weighting factor wi = 1∕DBHi (right)

Fig. 16 The plot of studentized residuals against the predicted height for N. pumilio. The studentized residuals were obtained by fitting the simple 
NLME H–D model for NP without weighting (left) and with power variance function (right)

Fig. 17 The plot of studentized residuals against the predicted height for N. pumilio. The studentized residuals were obtained by fitting the generalized 
NLME H–D model for NP without weighting (left) and with power variance function (right)
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