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Abstract 

Key message Crown area, sapling height, and biovolume extracted from UAV‑acquired RGB images provided 
accurate estimates of aboveground biomass and carbon stocks in a 5‑year‑old holm oak (Quercus ilex L.) plantation. 
Our models regressing UAV‑derived sapling variables against ground‑based measurements exhibited high R2 values 
(0.78–0.89), thereby reflecting that RGB data can be used as an effective tool for measuring young individuals.

Context The monitoring of tree sapling performance from the early stages of reforestation is of particular importance 
in the context of the global efforts to restore forests. Yet, most models to estimate carbon sequestration are devel‑
oped for adult trees. Thus, the few models specifically developed for young trees rely on ground‑based field sampling 
of tree growth parameters, which is time‑consuming and difficult to implement at large spatial scales.

Aims Our objectives were as follows: (1) to study the potential of UAV‑based RGB imagery to detect and extract sap‑
ling variables (e.g., crown area, height, and biovolume) by comparing ground‑based sapling measurements with UAV‑
derived data and (2) to compare the accuracy of the data estimated from RGB imagery with existing traditional 
field‑based allometric equations.

Methods We used a 5‑year‑old holm oak (Quercus ilex L. subsp. ballota (Desf.) Samp.) plantation (N = 617 plants), 
and their crown area, height, and biovolume were estimated from RGB imagery. Subsequently, the plants were 
harvested and the UAV‑derived data were compared with field‑measured sapling height and aboveground biomass 
values. Carbon content in leaves and stems was measured in a subsample of the saplings to estimate carbon stocks.

Results The models fitted with UAV‑derived variables displayed high performance, with R2 values from 0.78 to 0.89 
for height, leaf and stem biomass, total aboveground biomass, and carbon stocks. Moreover, aboveground biomass out‑
puts calculated with field height and UAV‑derived height using allometric equations exhibited R2 values from 0.65 to 0.68.

Conclusions Given the affordable cost of RGB cameras and the versatility of drones, we suggest that UAV‑based 
models may be a cost‑effective method to estimate the biomass and carbon stocks of young plantations. However, 
further studies conducting drone flights in different conditions are needed to make this approach more scalable.
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1 Introduction
Anthropogenic carbon dioxide emissions are one of the 
major contributors to climate change (Lacis et al. 2010). 
Removing or reducing  CO2 content from the atmosphere 
is thus a critical component of climate policies in order 
to operationalize net-zero emissions targets (Fuss et  al. 
2020; Hansen et al. 2017). Trees store carbon during their 
growth at scales from centuries to millennia and are con-
sidered the most efficient, natural, and eco-friendly car-
bon absorbers (Turner-Skoff and Cavender 2019). In fact, 
it is estimated that the world’s forests store around 363 Gt 
of carbon, sequestered both in above- and belowground 
live biomass, while additionally offering other valuable 
ecosystem services (Bellassen et al. 2011; Hu et al. 2022; 
Pan et  al. 2011). Thus, carbon sequestration through 
forest recovery and restoration represents a priority for 
climate policymakers to avoid climate change’s extreme 
consequences (Bastin et al. 2019; Lewis et al. 2019).

From local to global scales, estimating tree biomass and 
carbon accumulation is thus of paramount relevance to 
assess the potential of forest activities to act as carbon 
sinks (Keith et al. 2021; Weiskittel et al. 2015). However, 
implementing an integrated carbon accounting system 
remains challenging (Alivernini et  al. 2016; Vacchiano 
et  al. 2018). Monitoring restoration projects, naturally 
regenerated forests, and plantations with saplings (i.e., 
growing young trees of small size and slender stem) is 
essential to fully comprehend the mitigation benefit of 
forest ecosystems during their whole life cycles (Keith 
et  al. 2021; Pan et  al. 2022; van der Gaast et  al. 2018). 
Moreover, this could help in implementing sustainable 
forest management practices in a climate-smart frame-
work (IPCC 2022). Therefore, the development of rapid, 
inexpensive, and accurate methods for estimating and 
monitoring carbon sequestration by forests is of special 
relevance to address these challenges and assess their 
economic viability.

Traditional field-based methods for estimating biomass 
and carbon stocks have been widely used over the years 
since they provide accurate and detailed results. These 
methods either rely on a harvesting process in which dif-
ferent parts of the trees are cut, dried, and weighed or 
on field biometric measurements (i.e., diameter at breast 
height (DBH) and tree height) to establish allometric 
equations (e.g., Forrester et al. 2017; Sullivan et al. 2018; 
Vorster et  al. 2020). High- and low-resolution satellite 
imagery, including data from optical and radar sensors, is 
also gaining relevance to estimate the aboveground bio-
mass of mature forests (e.g., Li et al. 2020; Velázquez et al. 
2022; Yang et al. 2020). However, field-based methods are 
time-consuming, labor-intensive, expensive, and limited 
in terms of spatial cover (Weiskittel et al. 2015), whereas 
the application of satellite data is limited by temporal and 

spatial resolution. Moreover, most studies using field-
based methods or satellite images focus on adult trees 
and ignore seedlings and saplings, despite the need to 
estimate carbon stocks and monitor establishment suc-
cess in artificially (i.e., reforestation and afforestation) 
and naturally regenerated forests in the frame of climate 
change mitigation, carbon credits, or global restora-
tion commitments (Correia et  al. 2018; Hall et  al. 2006; 
Menéndez-Miguélez et al. 2021; Ruiz-Peinado et al. 2012; 
Sullivan et al. 2018). In fact, national or international pol-
icies of forest restoration for carbon sequestration usu-
ally require monitoring and auditing the development of 
trees from their early stages (REDD+; REDD 2010), mak-
ing the abovementioned models inappropriate and less 
effective. Thus, the development of easy-to-use methods 
for sapling biomass measurements would be economi-
cally, environmentally, and ecologically beneficial and 
advantageous.

The use of drones or unmanned aerial vehicles (UAV) 
as data sources in environmental and ecological studies 
has gained interest in recent years (Anderson and Gas-
ton 2013). UAVs have the ability to fly at low heights, 
and in various areas, even those difficult to access, which 
results in real-time high spatiotemporal resolution data 
(Ruwaimana et  al. 2018). They are cost-effective, flex-
ible, and safe and can reduce the data acquisition time 
compared to ground-based methods (Messinger et  al. 
2016; Murfitt et al. 2017). Different sensor types, includ-
ing multispectral, hyperspectral, and light detection and 
ranging (LiDAR), have been evaluated with success to 
estimate the biomass and carbon stock of young trees 
and small plants (Abdullah et al. 2021; Edson and Wing 
2011; Luo et  al. 2017). However, the use of these sen-
sors in drones is more expensive. RGB cameras, on the 
contrary, are less costly and require less processing while 
still providing high performance. For instance, Lussem 
et  al. (2019) proposed an efficient method for monitor-
ing grassland biomass by using color vegetation indices 
derived from a UAV-based RGB digital camera. Similarly, 
Navarro et al. (2020) and McCann et al. (2022) concluded 
that using RGB data coupled with the SFM (structure-
from-motion photogrammetry) method is capable of 
estimating the aboveground biomass of mangrove eco-
systems and individual shrub-sized plants, respectively, 
with high accuracy. However, UAV-mounted RGB has 
not yet been thoroughly evaluated for estimating the bio-
mass and carbon stock of young plantations at the indi-
vidual-sapling level, despite its potential to provide fast, 
scalable, and low-cost estimation.

The present study aimed to assess the biomass and car-
bon accumulated by young forest plantations by using 
a simple, inexpensive, and accurate approach based on 
point clouds derived from high-resolution RGB images. 
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Our specific objectives were as follows: (1) to investigate 
the potential of lightweight UAV RGB imagery to detect 
and extract sapling variables (i.e., crown area, height, 
and biovolume—volume of growing stock plus stem and 
leaves according to Schoene (2003)) at the individual 
level of young plantations by comparing ground-based 
sapling measurements with UAV-derived data and (2) to 
compare the accuracy of the data estimated from RGB 
imagery with existing traditional field-based allomet-
ric equations. Through this study, we seek to provide an 
approach that could be an effective and robust alternative 
to traditional ground-based methods for monitoring the 
carbon and biomass of early-stage tree plantations, even 
over large spatial scales.

2  Materials and methods
2.1  Study site and experimental setup
The study site was located at a Research Field Station 
of the Andalusian Institute of Agricultural and Fisher-
ies Research and Training (IFAPA) (37°10′20.02″ N, 
3°38′38.86″ W; Granada, southeastern Spain), a flat 
(slope ca. 2%), agricultural terrain at 625 m a.s.l. (Fig. 1). 

The climate in the area is Mediterranean, characterized 
by hot, dry summers, mild winters, and with most of 
the rainfall occurring in autumn and spring. The mean 
annual rainfall is 389 mm, and the mean annual tempera-
ture is 15.3 °C, July being the warmest month with aver-
age temperatures of 25.9 °C and January the coldest one 
with 6.2 °C (period of 2006–2020, climatic data collected 
from a meteorological station located at IFAPA Research 
Field Station). The soil is classified as calcaric fluvisol 
with a clay loam texture (24.8% silt, 31.0% clay and 44.2% 
sand), a gravel content of 17.9%, pH value of 8.5, organic 
matter content of 1.20%, volumetric-soil-water content at 
wilting point of 11.36%, total C of 4.15%, and N content 
of 0.085% (analyses for a soil sample of the first 20 cm 
depth composed by five subsamples at different positions 
within the study site).

A randomized block design (five blocks with a sur-
face of 56 × 28  m2 separated 4 m from each other) was 
established in autumn 2017 at the study site (Fig. 1c). At 
each block, there were 28 × 14 = 392 sampling points 
separated 2 m from each other, occupied either by out-
planted holm oak (Quercus ilex L. subsp. ballota (Desf.) 

Fig. 1 Location of the study site (a), picture of the common garden experiment 4 years after outplanting (b), and location of the saplings that grew 
from the nursery‑grown seedlings used in this study within the experimental setup (c). Each dot in c represents a position for a sapling (i.e., 
separated 2 m each other within each block), and black‑colored dots are the nursery‑grown saplings that were harvested for this study (N = 617)
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Samp.) seedlings previously cultivated in a nursery or 
by holm oak seedlings from direct seeding. This design 
was planned within the context of an experiment about 
the effect of the reforestation method (planting versus 
direct seeding) on oak reforestation success. However, 
for the present study, we did not split our data along 
these blocks, and we only use data from the outplanted 
seedlings given that by the end of the experiment, they 
provided a higher number of plants from the same affor-
estation method and a greater range of plant sizes to test 
the objectives of the study.

Acorns were harvested in autumn 2016 and grown in 
a nursery using 45-alveoli forest trays with a capacity of 
300  cm3 per cell and commercial substrate (coconut coir 
dust and peat 50:50 enriched with controlled-release fer-
tilizer (15-9-11 + 2MgO + TE; Osmocote®)). In Decem-
ber 2017, 899 nursery-grown seedlings were planted in 
the field site, evenly distributed among blocks in ran-
domly selected sampling points (Fig. 1c). Seedling height 
and biomass (both above- and belowground) at the 
moment of outplanting were 25.73 ± 0.73 cm and 8.49 
± 0.24 g, respectively (average for 90 harvested nursery-
grown seedlings). Plants were monitored in the field for 4 
years, until September 2021. Thus, the number of plants 
monitored for the present study was 617 (Fig.  1c). To 
prevent herbaceous competition, weed removal was per-
formed twice or three times (depending on the amount 
of rainfall) every year since the start of the experiment in 
December 2017 until autumn 2021. Weed removal was 
also carried out 1 week before the UAV flight.

2.2  Field measurements and carbon content analysis
Plant height and root collar diameter (two perpendicular 
measurements at the base of the trunk) were taken for 
all plants in mid-September 2021, when the UAV data 
was also acquired (see below). Afterwards, a harvest was 
performed between October and December 2021 by cut-
ting the plants at the base of the trunk. All plants were 
oven-dried at 60 °C until constant weight, and leaves and 
stems were separated and weighted with a precision scale 
in grams to two decimal places to obtain leaf biomass, 
stem biomass, and total aboveground biomass measure-
ments. A subsample of leaves was collected for 369 of 
the oven-dried plants to determine the leaf carbon con-
tent. Likewise, a stem subsection was extracted from 53 
of these harvested individuals for stem carbon measure-
ments. The carbon contents of the leaves and stems were 
measured in finely ground samples by means of a LECO 
elemental analyzer (LECO® TruSpec CN, St. Joseph, MI, 
USA) at the University of Granada (Spain). Leaf and stem 
carbon dry weights were calculated by multiplying each 
individual biomass measurement by the average values of 
leaf and stem % C, respectively. The total pool of carbon 

was calculated for each plant by summing their estimates 
of leaf and stem carbon dry weights.

2.3  Crown area, sapling height, and biovolume 
estimations from UAV‑based RGB imagery

A flight campaign with a Phantom 4 Advanced (DJI 
GMBH, Niederlauer, Germany) was conducted on Sep-
tember 17, 2021, using a Parrot Sequoia® (Parrot, Paris, 
France) high-resolution 20-megapixel RGB camera with 
a 4864 × 3648 pixel sensor (Figure 5 in Appendix). Aerial 
photographs were taken at a flight altitude of 40 m above 
the ground surface between 16:17 h and 17:04 h with 
sunny and cloudless meteorological conditions. To validate 
the UAV-derived height and volume estimates, 43 boxes 
of known shapes and sizes (ranging from 0.04 to 0.80 m 
in height and from 0.0009775 to 0.1152  m3 in volume; Fig-
ure 5 in Appendix) were randomly laid on the ground at 
the common garden site before the flight. The volumes and 
heights measured in the laboratory and estimated by the 
UAV procedure were later statistically compared.

The UAV data were processed using Pix4Dmapper 
4.7.5 (PIX4d, Lausanne, Switzerland). The data acquisi-
tion led to 589 images that were processed in five steps. 
First, the software automatically geolocated and matched 
45,476 key common 2D tie points across multiple images. 
Second, a 3D dense point cloud was developed using 
the following settings: high point density, original image 
scale, and at least three image matches per 3D point. 
Third, each 3D point (297,959,814 in total) was automati-
cally classified as bare ground, vegetation, or road and 
then manually verified or corrected by visually inspect-
ing the 0.56 cm/pixel RGB orthomosaic image using the 
Pix4Dmapper editing tool. Fourth, all 3D points were 
used to generate the digital surface model (DSM) with a 
resolution of 0.57 cm/pixel, while only bare ground and 
road points were used to interpolate the digital terrain 
model (DTM) with a resolution of 2.86 cm/pixel. Finally, 
the canopy height model (CHM), which provides the 
plant height for each 0.57 cm pixel, was obtained by sub-
tracting the DTM from the DSM in QGIS 3.12.3 (QGIS 
Development Team 2020).

To estimate the biovolume of each holm oak, pixels 
with CHM values greater than 10 cm (height of the small-
est individual recorded in the field) were first polygonized 
to identify the crown area of each individual. This 10-cm 
threshold was used to clearly draw the contours of each 
plant and avoid confusions with any other types of soil 
coverage and meant that sapling height and biovolume of 
some very small plants could not be calculated. Hence, 
this resulted in a total sample size with available data for 
UAV estimates of 571.

For each polygon, we extracted two values, the pixel 
value with the maximum height, used as an estimator of 
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sapling height, and the sapling biovolume, which is the 
sum of the volumes of all pixels within each crown poly-
gon, and the same procedure was followed with the boxes 
placed in the field for validation. The dataset containing 
all variables is available in Juan-Ovejero et al. (2023).

We therefore applied the following equation for sapling 
biovolume:

where Pixel width = 0.56 cm and Pixel length = 0.56 cm

2.4  UAV‑based RGB data versus existing traditional 
field‑based allometric equations

To further evaluate the effectiveness of the RGB data, we 
used two allometric equations developed for young for-
est plantations. Specifically, we used our field and UAV-
derived sapling height measurements to calculate total 
aboveground biomass with two generalized equations for 
a large group of forest tree species (1) and with a species-
specific equation (2) (Menéndez-Miguélez et al. 2022):

where ε′ is the residual term of the models.

2.5  Statistical analyses
We assessed significant correlations (p-value < 0.05) 
between field tree height and harvested aboveground 
biomass using Spearman correlation coefficients. We 
performed a linear regression with UAV-derived box 
measurements (i.e., box height and volume) against lab-
oratory box measurements and extracted the values of 
the determination coefficient (R2 adjusted; it provides 
an accurate measure of the goodness of fit of a model by 
considering the number of predictors and representing 
the proportion of the variance in the dependent variable 
explained by the independent variables), root-mean-
square error (RMSE), and mean bias error (MBE). Addi-
tionally, we regressed variables estimated with drone data 
(i.e., maximum sapling height, biovolume, and crown 
area) against field height measurements, aboveground 
biomass, and aboveground carbon stocks and assessed 
their fits to different models (i.e., linear, polynomial of 
different orders, logarithmic, and inverse exponential). 
Among all obtained regression models, we ran model 
comparisons and selected those with the following: (1) 

Biovolume(sapling) =
∑

Volume(pixel) = Pixel width×Pixel length×Pixel height

(1)Total aboveground biomass evergreen broadleaves = 0.7607 sapling height
2.7010

+ε′

(2)Total aboveground biomass(Quercus ilex) = 0.6520
(

sapling height
)2.8257

+ ε′

the highest R2 adjusted, (2) the lowest RMSE and Akaike 
Information Criteria (AIC) values, and (3) the low-
est number of terms in case the other two criteria were 
similar. Finally, the performance of RGB data was evalu-
ated by comparing the total aboveground biomass out-
puts obtained from field and UAV-derived height using 
allometric equations and then regressing these outputs 

against the real aboveground biomass values. All analyses 
were performed with R (R.3.6.2.; R Core Team 2018).

3  Results
3.1  Plant size, aboveground biomass, and carbon content
Field height ranged from 0.10 to 2.75 m, whereas root 
collar diameter ranged from 0.4 to 8.2 cm. Leaf and stem 
biomass ranged from 0.0004 to 2.31 kg and from 0.0002 
to 7.84 kg, respectively. The lowest measured value of 
total aboveground biomass was 0.0007 kg, whereas 
the highest was 8.38 kg. We found strong significant 

associations between field height and leaf biomass (ρ: 
0.86, p-value < 0.001), stem biomass (ρ: 0.90, p-value < 
0.001), and total aboveground biomass (ρ: 0.90, p-value 
< 0.001), although the data were highly dispersed in all 
cases (Figure 6 in Appendix).

The average carbon content in leaves and stems was 
46.0 ± 0.02% and 42.6 ± 0.34%, respectively. Leaf carbon 
dry weight ranged from 0.0002 to 1.06 kg, whereas stem 
carbon dry weight ranged from 0.0001 to 3.34 kg.

3.2  Calibration of UAV estimates of box height and volume
Box height (R2 = 0.96, RMSE = 0.0325, MBE = 0.00036, 
p-value < 0.001, n = 43) and box volume (R2 = 0.96, 
RMSE = 0.0045, MBE = 0.0026, p-value < 0.001, n = 43) 
showed strong relationships between UAV estimates and 
laboratory measurements (Figure 7 in Appendix).

3.3  Relationships between UAV estimates with variables 
measured in the field, aboveground biomass, 
and carbon stocks

The linear and second-order polynomial regressions 
between UAV-derived height and field height showed 
similar determination coefficients and RMSE and AIC 
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values, but we selected the linear regression as the 
final model because it had the lowest number of terms 
(Fig.  2a and Table  1 in Appendix). Moreover, the sec-
ond-, third-, and fourth-order polynomial regressions as 
well as the logarithmic regression between UAV-derived 
height and total aboveground biomass gave very large 
values of R2 adjusted and the lowest RMSE and AIC. 

We selected the second-order polynomial regression 
because it exhibited the lowest number of terms (Fig. 2b 
and Table  2 in Appendix). The second-order polyno-
mial regressions between biovolume with leaf biomass 
(Fig. 2c and Table 3 in Appendix), stem biomass (Fig. 2d 
and Table  4 in Appendix), and total aboveground bio-
mass (Fig.  2e and Table  5 in Appendix) and between 

Fig. 2 Linear regression between UAV‑derived sapling height (m) and field sapling height (m) (a), second‑order polynomial regression 
between UAV‑derived sapling height (m) and total aboveground biomass (kg) (b), second‑order polynomial regression between UAV‑derived 
biovolume  (m3) and leaf biomass (kg) (c), second‑order polynomial regression between UAV‑derived biovolume  (m3) and stem biomass (kg) (d), 
second‑order polynomial regression between UAV‑derived biovolume  (m3) and total aboveground biomass (kg) (e), and second‑order polynomial 
regression between UAV‑derived crown area  (m2) and total aboveground biomass (kg) (f). RMSE, root‑mean‑square error
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crown area with total aboveground biomass (Fig. 2f and 
Table 6 in Appendix) yielded the largest determination 
coefficients and the lowest RMSE and AIC values. The 
models ultimately selected were as follows:

Furthermore, for aboveground carbon stocks, the 
second-order polynomial regressions between biovol-
ume with leaf carbon dry weight (Fig.  3a and Table  7 
in Appendix) and with stem carbon dry weight (Fig. 3b 
and Table 8 in Appendix) gave the highest R2 adjusted 
and the lowest values of RMSE and AIC. The final 
selected models were of the form as follows:

(3)
Field sapling height = 0.21+ 1.15

(

UAV − derived sapling height
)

(4)

Total aboveground biomass = 0.0774 − 0.0241
(

UAV − derived sapling height
)

+ 1.45
(

UAV − derived tree height
)2

(5)
Leaf biomass = 0.0802+ 1.06(UAV − derived biovolume)

− 0.141 (UAV − derived biovolume)2

(6)
Stem biomass = 0.0705+ 2.85(UAV − derived biovolume)

− 0.323 (UAV − derived biovolume)2

(7)

Total aboveground biomass = 0.1515+ 3.91(UAV − derived biovolume)

− 0.465 (UAV − derived biovolume)2

(8)

Total aboveground biomass = −0.0303+ 2(UAV − derived crown area)

+ 0.494 (UAV − derived crown size)2

3.4  Aboveground biomass outputs from field height 
and UAV‑derived height using allometric equations

Estimated aboveground biomass with field height meas-
urements (Fig.  4a, c) and with UAV-derived height 
(Fig. 4b, d) showed similar fits to real aboveground bio-
mass data. Model 1 for evergreen broadleaf forest species 
gave R2 = 0.66 using field height measurements 4a) and 
R2 = 0.68 using UAV-derived height (Fig. 4b). Moreover, 
model 2 for holm oak showed R2 = 0.65 using field height 
(Fig. 4c) and R2 = 0.68 for UAV-derived height (Fig. 4d).

4  Discussion
This study shows that 3D point clouds generated from RGB 
images provide a fast, accurate, and low-cost approach for 
estimating plant aboveground biomass and carbon stocks 
in Quercus ilex young plantations devoid of litter and 
understory layers. This is a key issue to solve for the suc-
cessful integration of forestry activities into carbon mar-
kets, which requires regular monitoring and auditing from 
the early stages of these projects (i.e., every 5 years; REDD 
2010). In addition, there has been a continued increase in 
forest restoration projects in recent years (Mansourian 
et al. 2021), which further emphasizes the importance of 

(9)

Leaf carbon dry weight = 0.0369+ 0.485(UAV − derived biovolume)

− 0.065(UAV − derived biovolume)2

(10)

Stem carbon dry weight = 0.03+ 1.22(UAV − derived crown area)

− 0.138(UAV − derived crown area)2

Fig. 3 Second‑order polynomial regression between UAV‑derived biovolume  (m2) and leaf carbon dry weight (kg) (a) and second‑order 
polynomial regression between UAV‑derived biovolume  (m3) and stem carbon dry weight (kg) (b). RMSE, root‑mean‑square error
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monitoring saplings, especially since information about 
the growth and carbon uptake capacity of these newly 
planted trees is scarce (Waring et al. 2020). Our approach 
may therefore provide a useful, simple, and scalable tool to 
overcome these challenges, thereby bypassing the need for 
intensive, time-consuming, and limiting field samplings.

The results indicate that all variables extracted from the 
high-resolution RGB data showed a significant correlation 
with field-based measurements, comparable to previous 
research on small plants (e.g., shrubs; Zhang 2019) and sur-
passing those for young poplars (Peña et al. 2018). Moreo-
ver, we found that the holm oak aboveground biomass and 
carbon stocks may easily be estimated from the biovolume, 
a parameter that can be conveniently obtained from drone 
imagery. Specifically, as reflected by our models, leaf, stem, 
and total aboveground biomass showed high fits to biovol-
ume. However, these variables cannot be predicted simulta-
neously with RGB data. In general, our favorable outcomes 
are obtained despite the heterogeneous crown shape of 

holm oaks (Fig. 1b), which often develop lateral branches 
projected horizontally, making it more challenging to accu-
rately estimate their biomass and carbon sequestration. 
This suggests that the estimations for trees with a more 
structured canopy, such as conifers, may be even more pre-
cise. Thus, all of this presents the opportunity to develop a 
novel and efficient method for estimating carbon uptake in 
young plantations or restorations, regardless of their origin 
(i.e., natural or human made).

Our approach to estimating aboveground biomass and 
carbon stocks is powerful and significant not only in terms 
of accuracy and efficiency but also in terms of cost and 
time. Field-based methods require the sampling of plant 
size for any new estimation of carbon stock, which necessi-
tates the mobilization of human resources and the expend-
iture of days of work. Instead, the approach described 
here significantly reduces the effort and time required for 
sampling. Once a correlation is established between the 
size parameters (e.g., real biomass versus drone-estimated 

Fig. 4 Linear regressions between aboveground biomass estimated with allometric equations with real aboveground biomass values: using field 
tree height and model (1) (a), using UAV‑derived tree height and model (1) (b), using field tree height and model (2) (c), and using UAV‑derived tree 
height and model (2) (d). RMSE, root‑mean‑square error; MBE, mean bias error
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volume), the carbon sequestration monitoring may be 
done in a matter of hours by a single team of drone opera-
tors without the need for additional field sampling. There 
are also other technologies suitable for estimating plant 
structures and carbon content. LiDAR, for instance, can 
provide detailed three-dimensional vertical and horizontal 
information on canopy structure, resulting in more accu-
rate estimates of plant allometric parameters (Cao et  al. 
2019; Coops et al. 2007; García et al. 2010; Popescu 2007; 
Wallace et al. 2016). However, these technologies are still 
more expensive than RGB cameras (Hummel et al. 2011; 
McNicol et al. 2021). In addition, the data collected from 
these technologies are difficult to process, demand heavy 
operations, and require powerful processing resources 
(Kumar et al. 2015; Wallace et al. 2016). In summary, our 
relationships between field and drone data have created a 
new path for the use of UAV with RGB cameras, and this 
could be considered a low-cost and time-effective data 
acquisition alternative that allows to maintain an accept-
able spatial and temporal resolution, making it accessible 
to a wide scope of practitioners and administrations.

Our approach also provides a biomass estimation 
method that does not require the DBH value, which is a 
key parameter for traditional field-based biomass allomet-
ric equations used in several studies (Correia et  al. 2018; 
Menéndez-Miguélez et al. 2013; Monika et al. 2015; Ruiz-
Peinado et  al. 2011, 2012). However, the trees in young 
plantations may be below the height threshold of 130 cm 
necessary when measuring DBH, particularly in areas 
where abiotic factors such as drought or temperature limit 
vigorous growth, as is the case in this study (i.e., Mediter-
ranean-type ecosystems). In fact, only a few studies have 
developed equations for estimating the biomass and car-
bon stocks of young trees without accounting for the DBH 
(Annighöfer et  al. 2016; Cotillas et  al. 2016; Menéndez-
Miguélez et al. 2022). Apart from this, our model regressing 
UAV-derived sapling height against total aboveground bio-
mass (Fig. 2b) gave a greater fit (R2: 0.78) to the homologues 
method proposed by Menéndez-Miguélez et al. (2022) with 
field sapling height (Fig.  4a, c) and UAV-derived sapling 
height measurements (Fig. 4b, d), thereby highlighting the 
effectiveness and usefulness of the approach here proposed.

Although the estimates were highly correlated with 
aboveground biomass, it is important to mention that the 
conditions in the study area were particularly favorable for 
RGB imagery. The success of a drone flight is undeniably 
influenced by atmospheric conditions, and the precision 
of our models may not be as accurate as our outcomes 
have shown if the flight occurs on a day with overcast 
weather that could reduce the quality of data collected 
by the onboard sensors (Anderson and Gaston 2013). 
Moreover, the experimental site was ploughed regularly to 
remove weeds, and this was also done 1 week before the 

drone flight. Saplings were therefore clearly visible and 
easily detected over the bare surface of the soil. It may 
be very likely that in other contexts where aboveground 
carbon stocks need to be estimated, there may be other 
elements that need to be separated from the trees in the 
RGB imagery. Our study may therefore not be representa-
tive of other “real-world situations,” such as artificially or 
naturally regenerated forests, where litter and understory 
vegetation cover a high percentage of the ground and 
may complicate RGB data processing. Thus, more focus 
should be dedicated to the automatic recognition, separa-
tion, and identification of the different shapes and sizes of 
the various species. Deep learning techniques could be a 
great solution for such an issue (Egli and Höpke 2020; Fer-
reira et al. 2020; Fromm et al. 2019; Onishi and Ise 2021; 
Schiefer et  al. 2020), since this will reduce the manual 
processing and selection of the trees in the RGB data and 
subsequently increase the efficiency and accuracy of these 
models. Moreover, it is important to remark that our mod-
els were developed with data from only one study site, and 
this limitation prevents us from extrapolating our results 
to other holm oak plantations where the aspect and slope 
of the terrain or the presence of understory could affect the 
quality of the image or the individual object segmentation.  
For the scalability of this approach, we need to evaluate the 
accuracy of the method for species with different growth 
habits and under other environmental circumstances. In 
future studies, it would therefore be necessary to perform 
UAV flights in different mono-specific and mixed forests 
to address the variability in several factors that may influ-
ence the outcomes of our models.

5  Conclusion
The present study shows that RGB imagery acquired with 
UAV may be a reliable, cost-effective, and scalable approach 
for the estimation of the aboveground biomass and carbon 
stocks in young trees. This may be particularly relevant for 
the monitoring of plantations in the context of the carbon 
credit markets or the assessment of increasing number of 
global commitments and initiatives to restore forests (e.g., 
Castro et al. 2021). Moreover, it is expected that this method 
will produce even more accurate results for trees that have 
a more uniform structure (e.g., consistent trunk diameters, 
well-defined canopies, and a predictable branching pattern). 
Nevertheless, testing and evaluating the accuracy of the 
method for species with different growth habits and under 
other circumstances (e.g., different plant cover) are recom-
mended to assess its potential and powerfulness as well as 
to create models for different scenarios. Through further 
research, this approach might be applied for the estimation 
of aboveground carbon stocks in young forest stands of 
different tree species and different bioclimatic zones.
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Appendix

Fig. 5 RGB orthomosaic image obtained during the flight campaign performed on September 17, 2021

Fig. 6 Scatterplots showing the relationships between field tree height and leaf, stem, and total aboveground biomass
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Fig. 7 Linear regressions between UAV‑derived box height (m) and real box height (m) (a) and between UAV‑derived box volume  (m3) and real box 
volume  (m3) (b). RMSE, root‑mean‑square error; MBE, mean bias error

Table 1 Regression models between UAV‑derived sapling height 
and field tree height (n = 571)

Model R2 adjusted p‑value RMSE AIC

Lineal 0.87 < 0.001 16.76 4818.00

Second‑order polynomial 
regression

0.87 < 0.001 16.74 4817.60

Third‑order polynomial regres‑
sion

0.88 < 0.001 16.69 4814.69

Fourth‑order polynomial 
regression

0.88 < 0.001 16.66 4812.25

Logarithmic regression 0.76 < 0.001 23.01 5178.29

Inverse exponential regression 0.79 < 0.001 21.80 5116.75

RMSE root‑mean‑square error; AIC Akaike information criterion

Table 2 Regression models between UAV‑derived sapling height 
and total aboveground biomass (n = 571)

Model R2 adjusted p‑value RMSE AIC

Lineal 0.71 < 0.001 622.50 8924.65

Second‑order polynomial 
regression

0.78 < 0.001 547.03 8778.81

Third‑order polynomial 
regression

0.78 < 0.001 546.12 8776.92

Fourth‑order polynomial 
regression

0.77 < 0.001 549.62 8784.19

Logarithmic regression 0.51 < 0.001 809.48 9223.02

Inverse exponential regression 0.78 < 0.001 546.00 8775.69

RMSE, root‑mean‑square error; AIC, Akaike information criterion

Table 3 Regression models between UAV‑derived biovolume 
and leaf biomass (n = 571)

Model R2 adjusted p‑value RMSE AIC

Lineal 0.85 < 0.001 117.16 7027.28

Second‑order polynomial 
regression

0.87 < 0.001 109.88 6955.36

Third‑order polynomial 
regression

0.86 < 0.001 112.51 6982.24

Fourth‑order polynomial 
regression

0.86 < 0.001 113.85 6995.78

Logarithmic regression 0.58 < 0.001 199.30 7630.84

Inverse exponential regression 0.62 < 0.001 187.32 7560.39

RMSE, root‑mean‑square error; AIC, Akaike information criterion

Table 4 Regression models between UAV‑derived biovolume 
and stem biomass (n = 571)

Model R2 adjusted p‑value RMSE AIC

Lineal 0.86 < 0.001 318.61 8163.78

Second‑order polynomial 
regression

0.87 < 0.001 304.83 8114.53

Third‑order polynomial 
regression

0.87 < 0.001 306.25 8119.84

Fourth‑order polynomial 
regression

0.87 < 0.001 307.76 8125.42

Logarithmic regression 0.49 < 0.001 616.53 8913.69

Inverse exponential regression 0.64 < 0.001 518.88 8717.82

RMSE, root‑mean‑square error; AIC, Akaike information criterion
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Table 5 Regression models between UAV‑derived biovolume 
and total aboveground biomass (n = 571)

Model R2 adjusted p‑value RMSE AIC

Lineal 0.88 < 0.001 404.21 8434.10

Second‑order polynomial 
regression

0.89 < 0.001 381.50 8369.42

Third‑order polynomial regres‑
sion

0.89 < 0.001 385.75 8381.99

Fourth‑order polynomial 
regression

0.89 < 0.001 388.87 8391.15

Logarithmic regression 0.52 < 0.001 800.69 9210.61

Inverse exponential regression 0.65 < 0.001 687.17 9036.92

RMSE, root‑mean‑square error; AIC, Akaike information criterion

Table 6 Regression models between UAV‑derived crown area 
and total aboveground biomass (n = 571)

Model R2 adjusted p‑value RMSE AIC

Lineal 0.78 < 0.001 541.40 8766.07

Second‑order polynomial 
regression

0.79 < 0.001 527.41 8737.33

Third‑order polynomial regres‑
sion

0.79 < 0.001 527.49 8737.51

Fourth‑order polynomial 
regression

0.79 < 0.001 527.81 8738.20

Logarithmic regression 0.43 < 0.001 874.61 9310.92

Inverse exponential regression 0.74 < 0.001 589.95 8863.63

RMSE, root‑mean‑square error; AIC, Akaike information criterion

Table 7 Regression models between UAV‑derived biovolume 
and leaf carbon dry weight (n = 571)

Model R2 adjusted p‑value RMSE AIC

Lineal 0.85 < 0.001 53.87 6144.65

Second‑order polynomial 
regression

0.87 < 0.001 50.52 6072.73

Third‑order polynomial regres‑
sion

0.86 < 0.001 51.73 6099.61

Fourth‑order polynomial 
regression

0.86 < 0.001 52.35 6113.15

Logarithmic regression 0.58 < 0.001 91.64 6748.21

Inverse exponential regression 0.62 < 0.001 86.13 6677.76

RMSE, root‑mean‑square error; AIC, Akaike information criterion

Table 8 Regression models between UAV‑derived biovolume 
and stem carbon dry weight (n = 571)

Model R2 adjusted p‑value RMSE AIC

Lineal 0.86 < 0.001 135.73 7194.41

Second‑order polynomial 
regression

0.87 < 0.001 129.86 7145.16

Third‑order polynomial  
regression

0.87 < 0.001 130.46 7150.47

Fourth‑order polynomial 
regression

0.87 < 0.001 131.11 7156.05

Logarithmic regression 0.49 < 0.001 262.64 7944.33

Inverse exponential regression 0.64 < 0.001 221.04 7748.45

RMSE, root‑mean‑square error; AIC, Akaike information criterion
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